Cassava brown streak disease is a major disease affecting cassava. Along with foliar chlorosis and stem lesions, a very common symptom of cassava brown streak disease is the development of a dry, brown corky rot within the starch bearing tuberous roots, also known as necrosis. This paper presents a dataset of curated image data of necrosis bearing roots across different cassava varieties. The dataset contains images of cassava root cross-sections based on trial harvests from Uganda and Tanzania. The images were taken using a smartphone camera. The resulting dataset consists of 10,052 images making this the largest publicly available dataset for crop root necrosis.
The data is comprehensive and contains different variations of necrosis expression including root cross-section types, number of necrosis lesions, presentation of the necrosis lesions. The dataset is important and can be used to train machine learning models which quantify the percentage of cassava root damage caused by necrosis.
Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.