In this study, activated carbons prepared from agrowastes by chemical activation were used to remove acetic acid from an aqueous solution through a batch process. The prepared adsorbents were characterized by SEM, XRD, FT-IR, and point of zero charge (pHpzc). The effects of adsorbent dosage, initial concentration, and contact time were considered. Equilibrium data was tested using Langmuir, Freundlich, Temkin, and Frenkel–Halsey–Hill models. The degree of adsorption of acetic acid increased for both adsorbents as contact time, and adsorbent dosage and initial concentration were increased. The adsorption data were described well by the (Freundlich=Frenkel–Halsey–Hill) models with the highest regression coefficient of
R
2
=
0.9961
and
R
2
=
0.9951
for Rice Husk Activated Carbon (RH-AC) and Potato Peels Activated Carbon (PP-AC), respectively. This suggests a multilayer through the existence of a heterogeneous pore distribution in the adsorbent surface. Kinetic data agreed well with pseudosecond-order (
R
2
=
0.999
and
R
2
=
0.994
) RH-AC and PP-AC, correspondingly. This indicates that the adsorption process was chemisorption in nature. The regeneration studies showed that the adsorbents prepared could be renewed and reused before losing their adsorbing affinity for acetic acid.
Advected cyanobacteria, algal blooms and cyanotoxins have been increasingly detected in freshwater ecosystems. This review gives an insight into the present state of knowledge on the taxonomy, dynamics, toxic effects, human and ecological health implications of cyanobacteria, algal blooms and cyanotoxins in the East African Community lakes. The major toxigenic microalgae in East African lakes include Microcystis, Arthrospira, Dolichospermum, Planktolyngbya and Anabaenopsis species. Anatoxin-a, homoanatoxin-a, microcystins (MCs), cylindrospermopsin and nodularin have been quantified in water from below method detection limits to 81 µg L−1, with peak concentrations characteristically reported for the wet season. In whole fish, gut, liver and muscles, MCs have been found at concentrations of 2.4 to 1479.24 μg kg−1, which can pose human health risks to a daily consumer. While there have been no reported cases of cyanotoxin-related poisoning in humans, MCs and anatoxin-a (up to 0.0514 μg kg−1) have been identified as the proximal cause of indiscriminate fish kills and epornitic mortality of algivorous Phoeniconaias minor (lesser flamingos). With the unequivocal increase in climate change and variability, algal blooms and cyanotoxins will increase in frequency and severity, and this will necessitate swift action towards the mitigation of nutrient-rich pollutants loading into lakes in the region.
A magnetically active nanocomposite material has been synthesized from the reaction mixture of magnetite core iron nanoparticles electrostatically coated with SiO2, hydrotalcite nanosheets ([Eu8 (OH)20 (H2O)n]4+), and decatungstophosphate anion ([α-PW10O367−]). The resulting nanocomposite material, denoted as Fe3O4@SiO2@LEuH@PW10, is demonstrated to effectively adsorb chromate anions from aqueous solutions. The adsorption isotherms fit the Langmuir model with a capacity of 23 mmol·g−1 after 42 minutes at 25°C. The reaction is spontaneous at room temperature with 44.22 kJ·mol−1 of activation energy required. In addition, heating the chromate-adsorbed nanocomposite material at 40°C results in dissociation of the chromate anions from the nanocomposite material. As such, the recycled adsorbent Fe3O4@SiO2@LEuH@PW10 is reused for chromate removal in aqueous solutions for at least ten times without obvious loss of activity. This spontaneous reversible chemisorption mechanism for chromate adsorption provides a new pathway for separation and cleaning of industrial wastewater contaminated with chromate ions. The robust catalytic activity of the nanocomposite is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.