Sonic hedgehog (Shh) plays well characterized roles in brain and spinal cord development, but its functions in the hypothalamus have been more difficult to elucidate owing to the complex neuroanatomy of this brain area. Here, we use fate mapping and conditional deletion models in mice to define requirements for dynamic Shh activity at distinct developmental stages in the tuberal hypothalamus, a brain region with important homeostatic functions. At early time points, Shh signaling regulates dorsoventral patterning, neurogenesis and the size of the ventral midline. Fate-mapping experiments demonstrate that Shh-expressing and-responsive progenitors contribute to distinct neuronal subtypes, accounting for some of the cellular heterogeneity in tuberal hypothalamic nuclei. Conditional deletion of the hedgehog transducer smoothened (Smo), after dorsoventral patterning has been established, reveals that Shh signaling is necessary to maintain proliferation and progenitor identity during peak periods of hypothalamic neurogenesis. We also find that mosaic disruption of Smo causes a non-cell autonomous gain in Shh signaling activity in neighboring wild-type cells, suggesting a mechanism for the pathogenesis of hypothalamic hamartomas, benign tumors that form during hypothalamic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.