Fucosylation of glycans on glycoproteins and -lipids requires the enzymatic activity of relevant fucosyltransferases and GDP-L-fucose as the donor. Due to the biological importance of fucosylated glycans, a readily accessible source of GDP-L-fucose would be required. Here we describe the construction of a stable recombinant S.cerevisiae strain expressing the E.coli genes gmd and wcaG encoding the two enzymes, GDP-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/4-reductase (GMER(FX)) respectively, needed to convert GDP-mannose to GDP-fucose via the de novo pathway. Taking advantage of the rich inherent cytosolic GDP-mannose pool in S.cerevisiae cells we could easily produce 0.2 mg/l of GDP-L-fucose with this recombinant yeast strain without addition of any external GDP-mannose. The GDP-L-fucose product could be used as the fucose donor for alpha1,3fucosyltransferase to synthesize sialyl Lewis x (sLex), a glycan crucial for the selectin-dependent leukocyte traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.