Evidence accumulated from past findings indicates that defective proteostasis may contribute to risk factors for cancer generation. Irregular assembly of abnormal proteins catalyzes the disturbance of cellular proteostasis and induces the ability of abnormal cellular proliferation. The autophagy mechanism plays a key role in the regular clearance of abnormal/poor lipids, proteins, and various cellular organelles. The results of functional and effective autophagy deliver normal cellular homeostasis, which establishes supportive metabolism and avoids unexpected tumorigenesis events. Still, the precise molecular mechanism of autophagy in tumor suppression has not been clear. How autophagy triggers selective or nonselective bulk degradation to dissipate tumor promotion under stress conditions is not clear. Under proteotoxic insults to knockdown the drive of tumorigenesis, it is critical for us to figure out the detailed molecular functions of autophagy in human cancers. The current article summarizes autophagy‐based theragnostic strategies targeting various phases of tumorigenesis and suggests the preventive roles of autophagy against tumor progression. A better understanding of various molecular partners of autophagic flux will improve and innovate therapeutic approaches based on autophagic‐susceptible effects against cellular oncogenic transformation.
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their
Over 250 million people are living with chronic infection caused by the hepatitis B virus (HBV). HBV has three surface proteins, namely small (SHBs), medium (MHBs) and large (LHBs), and they play different roles in the virus life cycle. The approved hepatitis B vaccine only contains the SHBs protein and many studies have focused on characterising the functional domains in SHBs. Although the LHBs protein is less studied, recent studies have shown that it plays important roles in mediating viral entry, replication and assembly. Over the years, there have been major advancements in monoclonal antibody (mAb) discovery tools and multiple mAbs have been developed to specifically target the preS1 domain in LHBs. We summarise the HBV infection systems and antibody discovery strategies that have been utilised by various research groups to assess the potential use of anti‐preS1 mAbs as therapeutic antibodies against HBV or in the development of new diagnostic assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.