PACS. 81.30.Kf -Martensitic transformations PACS. 71.20.Be -Electron density of states and band structure of transition metals and alloys PACS. 71.18.+y -Fermi surface: calculations PACS. 71.15.Nc -Total energy calculationsThe electronic structure of Mn 2 NiGa has been studied using density functional theory and photoemission spectroscopy. The lower temperature tetragonal martensitic phase with c/a= 1.25 is more stable compared to the higher temperature austenitic phase. Mn 2 NiGa is ferrimagnetic in both phases. The calculated valence band spectrum, the optimized lattice constants and the magnetic moments are in good agreement with experiment. The majority-spin Fermi surface (FS) expands in the martensitic phase, while the minority-spin FS shrinks. FS nesting indicates occurrence of phonon softening and modulation in the martensitic phase.PACS numbers:
The modifications in the electronic structure of Ni 2+x Mn 1−x Ga by Ni doping have been studied using full potential linearized augmented plane wave method and ultra-violet photoemission spectroscopy. Ni 3d related electron states appear due to formation of Ni clusters. We show the possibility of changing the minority-spin DOS with Ni doping, while the majority-spin DOS remains almost unchanged. The total magnetic moment decreases with excess Ni. The total energy calculations corroborate the experimentally reported changes in the Curie temperature and the martensitic transition temperature with x.
Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn(2)NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn(2)NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.