Based on self‐assembly and mimicking strategies occurring in nature, peptide nanomaterials play a unique role in a new generation of hybrid materials for the electronics of the 21st century. This report describes the functionalization of diphenylalanine (FF)‐based micro/nanostructures with blue‐emitting conducting polymers of the polyfluorene (PF) family. The FF:PF polymer nanocomposites are synthesized by a liquid‐vapor phase method. Electron microscopy images reveal di‐octyl‐substituted PF (PF8) to bind better to the FF micro/nanotubes in comparison with ethyl‐hexyl PF (PF2/6), which influences its optical properties. Molecular dynamics simulations of FF nanotubes with monomeric units of PFs show that PF8 favors greater proximity to the grooves on the surface of the nanotubes due to a higher van der Waals interaction energy compared to PF2/6. The FF:PF nanocomposites are further utilized in light‐emitting diodes. Biodegradability tests from FF:PF8 nanocomposite films show more than 80% weight loss in 2 h by enzymatic action compared to PF8 pristine films, which do not degrade. Self‐assembly of FF nanostructures with organic semiconductors opens up a new generation of biocompatible and biodegradable materials in organic electronics.
The effect of polarization modulation of the gate dielectric on the performance of metal-oxidesemiconductor field-effect transistors has been investigated for more than a decade. However, there are no comparable studies in the area of organic field-effect transistors (FETs) using polymer ferroelectric dielectrics, where the effect of polarization rotation by 90 • is examined on the FET characteristics. We demonstrate the effect of polarization rotation in a relaxor ferroelectric dielectric, poly(vinylidene fluoride trifluorethylene (PVDF-TrFE), on the performance of small molecule based organic FETs. The subthreshold swing and other transistor parameters in organic FETs can be controlled in a reversible fashion by switching the polarization direction in the PVDF-TrFE layer. X-ray diffraction and electron microscopy images from PVDF-TrFE reveal changes in the ferroelectric phase and domain size, respectively, upon rotating the external electric field by 90 •. The structural changes corroborate density-functional theoretical studies of an oligomer of the ferroelectric molecule in the presence of an applied electric field. The strategies enumerated here for polarization orientation of the polymer ferroelectric dielectric are applicable for a wide range of polymeric and organic transistors.
Hybrid organic-inorganic photodiode interfaces have gained significant interest due to their unique physical properties such as mechanical flexibility and high photosensitivity. Two diketopyrrolopyrrole (DPP)-based donor-acceptor copolymers with different backbone conformations are characterized in an inverted non-fullerene photodiode architecture using ZnO nano-patterned films as the electron transport layer. The DPP copolymer with a thienothiophene unit (PBDT-TTDPP) is more planar and rigid compared to the DPP system with a thiophene unit connecting the donor and acceptor moieties within the monomer (PBDT-TDPP). The hybrid interfaces were optimized by using poly(3-hexylthiophene) (P3HT) as the p-type layer for monitoring the critical thickness and morphology of the ZnO layer. The maximum photoresponsivity from a P3HT:ZnO photodiode was found to be 56 mA/W. The photoresponsivity of PBDT-TTDPP:ZnO photodiodes were found to be more than two orders of magnitude higher than PBDT-TDPP:ZnO photodiodes, which is attributed to an enhanced transport of carriers due to the planar backbone conformation of the PBDT-TTDPP copolymer. Capacitance-voltage measurements from hybrid Schottky barrier interfaces further shed light into the nature of photocarriers and device parameters. Firstprinciples time-dependent density-functional theoretical calculations yield a higher absorptivity for the PBDT-TTDPP dimer compared to PBDT-TDPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.