Unsupervised Feature Selection (UFS) methods try to extract features that can well keep the intrinsic structure of data. To make full use of such information in this paper we use one of the simplest graph sparsification strategies MST (Minimum Spanning Tree) for the task of UFS. A novel graph structural information method is proposed for unsupervised feature selection, we simplify and preserve correlation between features via MST through a structure that simultaneously captures the local and global structure of data, and then use graph structural information directly to achieve the subset representative features with minimum redundancy and more discriminative power. To show the effectiveness of our method, some of the most representative and referenced UFS methods are used for conducting experiments on some benchmark datasets. Experimental results verify that the proposed feature subset selection algorithm is effective, more specifically at the running time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.