Abstract-This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for underwater mission that maximizes the sum of the priorities and minimizes the total risk percentage while meeting the given constraints. Making use of the heuristic nature of genetic and swarm intelligence algorithms in solving NP-hard graph problems, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are employed to find the optimum solution, where each individual in the population is a candidate solution (route). To evaluate the robustness of the proposed methods, the performance of the all PS and GA algorithms are examined and compared for a number of Monte Carlo runs. Simulation results suggest that the routes generated by both algorithms are feasible and reliable enough, and applicable for underwater motion planning. However, the GA-based route planner produces superior results comparing to the results obtained from the PSO based route planner.
Advances in hardware technology have enabled more integration of sophisticated software, triggering progresses in development and employment of Unmanned Vehicles (UVs), and mitigating restraints for onboard intelligence. As a result, UVs can now take part in more complex mission where continuous transformation in environmental condition calls for higher level of situational responsiveness. This paper serves as an introduction to UVs mission planning and management systems aiming to highlight some of the recent developments in the field of autonomous underwater and aerial vehicles in addition to stressing some possible future directions and discussing the learned lessons. A comprehensive survey over autonomy assessment of UVs, and different aspects of autonomy such as situation awareness, cognition, and decision-making has been provided in this study. The paper separately explains the humanoid and autonomous system's performance and highlights the role and impact of a human in UVs operations.
Highlights Development of a reliable path planning for having a successful rendezvous mission. Presenting the rendezvous problem as a Nonlinear Optimal Control Problem by defining the loitering and rendezvous point as boundary conditions using Mayer cost function. Providing realistic scenarios for operation an AUV encountering a real map, uncertainty of the environment, timevarying current, and obstacles information. Facilitate the planner to online replanning capability. Utilizing four evolutionary methods called PSO, DE, BBO and FA to provide a numerical solution for the NOCP.
Promoting the levels of autonomy facilitates the vehicle in performing long-range operations with minimum supervision. The capability of Autonomous Underwater Vehicles (AUVs) to fulfill the mission objectives is directly influenced by route planning and task assignment system performance. This paper proposes an efficient task-assign route planning model in a semi-dynamic operation network, where the location of some waypoints are changed by time in a bounded area. Two popular meta-heuristic algorithms named biogeography-based optimization (BBO) and particle swarm optimization (PSO) are adopted to provide real-time optimal solutions for task sequence selection and mission time management. To examine the performance of the method in a context of mission productivity, mission time management and vehicle safety, a series of Monte Carlo simulation trials are undertaken. The results of simulations declare that the proposed method is reliable and robust particularly in dealing with uncertainties and changes of the operation network topology; as a result, it can significantly enhance the level of vehicle's autonomy by relying on its reactive nature and capability of providing fast feasible solutions.
An autonomous underwater vehicle needs to possess a certain degree of autonomy for any particular underwater mission to fulfil the mission objectives successfully and ensure its safety in all stages of the mission in a large-scale operating field. In this article, a novel combinatorial conflict-free task assignment strategy, consisting of an interactive engagement of a local path planner and an adaptive global route planner, is introduced. The method takes advantage of the heuristic search potency of the particle swarm optimization algorithm to address the discrete nature of routing-task assignment approach and the complexity of nondeterministic polynomial-time-hard path planning problem. The proposed hybrid method is highly efficient as a consequence of its reactive guidance framework that guarantees successful completion of missions particularly in cluttered environments. To examine the performance of the method in a context of mission productivity, mission time management, and vehicle safety, a series of simulation studies are undertaken. The results of simulations declare that the proposed method is reliable and robust, particularly in dealing with uncertainties, and it can significantly enhance the level of a vehicle's autonomy by relying on its reactive nature and capability of providing fast feasible solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.