Composite materials have distinct properties such as a high strength-to-weight ratio, high corrosion resistance, a high modulus-to-weight ratio, and wear resistance. The potential, strong mechanical properties and lower cost properties of E-glass fibre motivated us for this work. Tensile, flexural, and Izod impact tests were used in the current study to conduct a static analysis of E-glass reinforced isophthalic polyester composite and E-glass reinforced general purpose (GP) or orthophthalic polyester composite. Thermal-mechanical behaviour was investigated using thermogravimetric analysis and dynamic mechanical analysis tests. Furthermore, the surface morphology of the tested composites was examined using a scanning electron microscope. When compared to E-glass reinforced GP polyester composite, E-glass/isophthalic polyester composite demonstrated superior flexural properties and thermal stability. However, the tensile and impact properties of E-glass/GP polyester composite were found to be higher than those of E-glass/isophthalic polyester composite. SEM images show fibre pull-out, matrix cracking, and fibre breakage, among other things. The loss modulus and damping values for E-glass reinforced GP polyester composite were found to be greater than those for E-glass reinforced isophthalic polyester composite. The current composite can be used in marine applications, particularly the hull: frame or body of the boat.
Natural fibres may be a good alternative to synthetic fibres when reinforcing polymer composites in order to maintain a healthy environment. Cotton is a natural fibre with many benefits, including low density, good heat conductivity, high flexibility, resilience, elasticity and renewability. Cotton's crystalline and fibrillar structure accounts for its exceptional strength. We were inspired to conduct this review because of the potential of cotton fibre, as well as its mass production and low cost. This article reviews and summarises the mechanical properties of cotton fibre-reinforced polymer composites, including their flexural, tensile and impact properties. The effect of compatibilizers on the adhesion of two different phases of a composite material was also investigated in this study. Cotton fibre-reinforced composites were investigated as a replacement for desirable features by the textile, building and automotive industries. The industrial applications of cotton fibre-reinforced polymer composites are also highlighted in the final section.
The chemical, mechanical, thermal, and microstructural properties of Poly Vinyl Chloride (PVC) foam based E-glass reinforced polyester sandwich composites are evaluated as compared with single layer E-glass both side of PVC foam polyester composite (C1) and double layer E-galss both side of PVC foam polyester composite (C2). Fourier transform infrared (FTIR) spectroscopy was used to analyze the chemical composition of composites. The mechanical properties of fabricated composites were studied in terms of impact, flexural, and tensile strength. Thermogravimetric analysis and Dynamic mechanical analysis tests were done for examine thermal properties. Carbonyl group –C=O of the ester group, unsaturation sites of –(CH2)n–, CH, and CH3 stretching were identified in chemical analysis. The tensile strength and tensile modulus for C2 was found higher 37% and 152% more respectively as compared to C1 composite however C1 composite showed better flexural properties as compared to C2. C2 composite has a 31% higher impact strength than composite C1. Both C1 and C2 composite showed approximately equal thermal stability whereas C2 composite showed better damping properties. SEM micrograph of fractured surface divulges the fiber pullout, matrix cracking, and honeycomb structure. Fabricated light weight sandwich composites can be used for marine application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.