This paper discusses the bathymetric mapping technologies by means of satellite remote sensing (RS) with special emphasis on bathymetry derivation models, methods, accuracies, advantages, limitations, and comparisons. Traditionally, bathymetry can be mapped using echo sounding sounders. However, this method is constrained by its inefficiency in shallow waters and very high operating logistic costs. In comparison, RS technologies present efficient and cost-effective means of mapping bathymetry over remote and broad areas. RS of bathymetry can be categorised into two broad classes: active RS and passive RS. Active RS methods are based on active satellite sensors, which emit artificial radiation to study the earth surface or atmospheric features, e.g. light detection and ranging (LIDAR), polarimetric synthetic aperture radar (SAR), altimeters, etc. Passive RS methods are based on passive satellite sensors, which detect sunlight (natural source of light) radiation reflected from the earth and thermal radiation in the visible and infrared portion of the electromagnetic spectrum, e.g. multispectral or optical satellite sensors. Bathymetric methods can also be categorised as imaging methods and non-imaging methods. The non-imaging method is elucidated by laser scanners or LIDAR, which measures the distance between the sensor and the water surface or the ocean floor using a single wave pulse or double waves. On the other hand, imaging methods approximate the water depth based on the pixel values or digital numbers (DN) (representing reflectance or backscatter) of an image. Imaging methods make use of the visible and/or near infrared (NIR) and microwave radiation. Imaging methods are implemented with either analytical modelling or empirical modelling, or by a blend of both. This paper presents the development of bathymetric mapping technology by using RS, and discusses the state-of-the-art S. D. Jawak et al. 148bathymetry derivation methods/algorithms and their implications in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.