IntroductionCell‐based therapy is considered as promising strategy to cure stroke. However, employing appropriate type of stem cell to fulfill many therapeutic needs of cerebral ischemia is still challenging. In this regard, the current study was designed to elucidate therapeutic potential of epidermal neural crest stem cells (EPI‐NCSCs) compared to bone marrow mesenchymal stem cells (BM‐MSCs) in rat model of ischemic stroke.MethodsIschemic stroke was induced by middle cerebral artery occlusion (MCAO) for 45 minutes. Immediately after reperfusion, EPI‐NCSCs or BM‐MSCs were transplanted via intra‐arterial or intravenous route. A test for neurological function was performed before ischemia and 1, 3, and 7 days after MCAO. Also, infarct volume ratio and relative expression of 15 selected target genes were evaluated 7 days after transplantation.ResultsEPI‐NCSCs transplantation (both intra‐arterial and intravenous) and BM‐MSCs transplantation (only intra‐arterial) tended to result in a better functional outcome, compared to the MCAO group; however, this difference was not statistically significant. The infarct volume ratio significantly decreased in NCSC‐intra‐arterial, NCSC‐intravenous and MSC‐intra‐arterial groups compared to the control. EPI‐NCSCs interventions led to higher expression levels of Bdnf, nestin, Sox10, doublecortin, β‐III tubulin, Gfap, and interleukin‐6, whereas neurotrophin‐3 and interleukin‐10 were decreased. On the other hand, BM‐MSCs therapy resulted in upregulation of Gdnf, β‐III tubulin, and Gfap and down‐regulation of neurotrophin‐3, interleukin‐1, and interleukin‐10.ConclusionThese findings highlight the therapeutic effects of EPI‐NCSCs transplantation, probably through simultaneous induction of neuronal and glial formation, as well as Bdnf over‐expression in a rat model of ischemic stroke.
Our data indicated that a mild reduction in brain perfusion without permanent lesion can dramatically increase the basal synaptic transmission. This effect may be associated with an increase in the neurotransmitter content of the pre-synaptic neurons. This hypothesis could provide a new insight into the relationship between IT and synaptic efficacy. Synapse 70:351-360, 2016. © 2016 Wiley Periodicals, Inc.
The induction of ischemic stroke in the experimental model requires general anesthesia. One of the factors that can be effective in the size of ischemic brain lesions and neurological outcomes is the type of anesthesia. So, the current study was designed to compare the impacts of the most important and widely used anesthetics including halothane, isoflurane, and chloral hydrate on the transient middle cerebral artery occlusion (MCAO) outcomes. Adult Male Sprague-Dawley rats were randomly divided into three groups as follows: (1) MCAO + halothane group, (2) MCAO + isoflurane group, and (3) MCAO + chloral hydrate group. After 24 h, the mortality rate, infarct size, tissue swelling, neurological function, hemodynamic, and arterial blood gas parameters were assessed. Our finding showed that 60 min MCAO rats anesthetized with chloral hydrate significantly increased mortality rate, infarct size, tissue swelling, and neurological deficits compared with halothane and isoflurane anesthetics after 24 h of MCAO. Also, chloral hydrate caused a significant decrease in mean arterial pressure and arterial pO2 compared to halothane and isoflurane anesthetics. On the basis of the current data, we concluded that chloral hydrate increased cerebral infarct volume and neurological outcomes and reduced hemodynamic and metabolic parameters compared with halothane and isoflurane-anesthetized rats temporal MCAO.
Objectives: The middle cerebral artery occlusion (MCAO) model was introduced more than three decades ago to simulate human stroke. Till now, it is the most common platform to investigate stroke-induced pathological changes as well as discover new drugs and treatments. Induction of general anesthesia is mandatory to induce this model, and different laboratories are using various anesthetic drugs, which might affect MCAO results. Therefore, the present study was designed to compare the impacts of several widely used anesthetic regimens on the MCAO outcomes. Materials and Methods: Here, adult male rats were anesthetized by isoflurane inhalation, intraperitoneal injection of chloral hydrate, intraperitoneal injection of ketamine-xylazine, or subcutaneous administration of ketamine-xylazine, then subjected to 30 min MCAO. Mortality rate, body weight change, infarct size, as well as cognitive and neurological performance were evaluated up to three days after the surgery. Results: Our findings revealed chloral hydrate caused the highest, while subcutaneous ketamine-xylazine led to the lowest mortality rate. Meanwhile, there were no significant differences in the body weight loss, infarct size, cognitive impairments, and neurological deficits among the experimental groups. Conclusions: Based on the current results, we proposed that subcutaneous injection of ketamine-xylazine could be an effective anesthetic regimen in the rat model of MCAO with several advantages such as low mortality, cost-effectiveness, safety, ease of administration, and not requiring specialized equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.