The COVID-19 is rapidly scattering worldwide, and the number of cases in the Eastern Mediterranean Region is rising. Thus, there is a need for immediate targeted actions. We designed a longitudinal study in a hot outbreak zone to analyze the serial findings between infected patients for detecting temporal changes from February 2020. In a hospital-based open-cohort study, patients are followed from admission until one year from their discharge (the 1st, 4th, 12th weeks, and the first year). The patient recruitment phase finished at the end of August 2020, and the follow-up continues by the end of August 2021. The measurements included demographic, socio-economics, symptoms, health service diagnosis and treatment, contact history, and psychological variables. The signs improvement, death, length of stay in hospital were considered primary, and impaired pulmonary function and psychotic disorders were considered main secondary outcomes. Moreover, clinical symptoms and respiratory functions are being determined in such follow-ups. Among the first 600 COVID-19 cases, 490 patients with complete information (39% female; the average age of 57±15 years) were analyzed. Seven percent of these patients died. The three main leading causes of admission were: fever (77%), dry cough (73%), and fatigue (69%). The most prevalent comorbidities between COVID-19 patients were hypertension (35%), diabetes (28%), and ischemic heart disease (14%). The percentage of primary composite endpoints (PCEP), defined as death, the use of mechanical ventilation, or admission to an intensive care unit was 18%. The Cox Proportional-Hazards Model for PCEP indicated the following significant risk factors: Oxygen saturation < 80% (HR = 6.3; [CI 95%: 2.5,15.5]), lymphopenia (HR = 3.5; [CI 95%: 2.2,5.5]), Oxygen saturation 80%-90% (HR = 2.5; [CI 95%: 1.1,5.8]), and thrombocytopenia (HR = 1.6; [CI 95%: 1.1,2.5]). This long-term prospective Cohort may support healthcare professionals in the management of resources following this pandemic.
Background The novel coronavirus disease 2019 (COVID-19) continues to wreak havoc worldwide. This study assessed the ability of chest computed tomography (CT) severity score (CSS) to predict intensive care unit (ICU) admission and mortality in patients with COVID-19 pneumonia. Materials and Methods A total of 192 consecutive patients with COVID-19 pneumonia aged more than 20 years and typical CT findings and reverse-transcription polymerase chain reaction positive admitted in a tertiary hospital were included. Clinical symptoms at admission and short-term outcome were obtained. A semi-quantitative scoring system was used to evaluate the parenchymal involvement. The association between CSS, disease severity, and outcomes were evaluated. Prediction of CSS was assessed with the area under the receiver-operating characteristic (ROC) curves. Results The incidence of admission to ICU was 22.8% in men and 14.1% in women. CSS was related to ICU admission and mortality. Areas under the ROC curves were 0.764 for total CSS. Using a stepwise binary logistic regression model, gender, age, oxygen saturation, and CSS had a significant independent relationship with ICU admission and death. Patients with CSS ≥12.5 had about four-time risk of ICU admission and death (odds ratio 1.66, 95% confidence interval 1.66 – 9.25). The multivariate regression analysis showed the superiority of CSS over other clinical information and co-morbidities. Conclusion CSS was a strong predictor of progression to ICU admission and death and there was a substantial role of non-contrast chest CT imaging in the presence of typical features for COVID-19 pneumonia as a reliable predictor of clinical severity and patient’s outcome.
Novel coronavirus (SARS-CoV-2) occurred in December 2019 in Wuhan, China, and has become a global health emergency. Coronavirus primarily is a respiratory virus, but it has been detected in the brain and cerebrospinal fluid of infected individuals. The present report describes a case of fulminant encephalitis in a patient affected by COVID-19.
Background The gold standard for verifying COVID-19 mostly depends on microbiological tests like real-time polymerase chain reaction (RT-PCR). However, the availability of RT-PCR kits can be known as a problem and false negative results may be encountered. Although CT scan is not a screening tool for the diagnosis of COVID-19 pneumonia, given the widespread acquisition of it in the pandemic state, familiarity with different CT findings and possible differential diagnosis is essential in this regard. Main text In this review, we introduced the typical and atypical CT features of COVID-19 pneumonia, and discussed the main differential diagnosis of COVID-19 pneumonia. Conclusions The imaging findings in this viral pneumonia showed a broad spectrum, and there are no pathognomonic imaging findings for COVID-19 pneumonia. Although CT scan is not a diagnostic and screening tool, familiarity with different imaging findings and their differential diagnosis can be helpful in a rapid and accurate decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.