Networks in the real world are dynamic and evolving. The most critical process in networks is to determine the structure of the community, based on which we can detect hidden communities in a complex network. The design of strong network structures is of great importance, meaning that a system must maintain its function in the face of attacks and failures and have a strong community structure. In this paper, we proposed the robust memetic algorithm and used the idea to optimize the detection of dynamic communities in complex networks called RDMA_NET (Robust Dynamic Memetic Algorithm). In this method, we work on dynamic data that affects the two main parts of the initial population value and the calculation of the evaluation function of each population, and there is no need to determine the number of communities in advance. We used two sets of real-world networks and the LFR dataset. The results show that our proposed method, RDMA_Net, can find a better solution than modern approaches and provide near-optimal performance in search of network topologies with a strong community structure.
Complex networks are used in a variety of applications. Revealing the structure of a community is one of the essential features of a network, during which remote communities are discovered in a complex network. In the real world, dynamic networks are evolving, and the problem of tracking and detecting communities at different time intervals is raised. We can use dynamic graphs to model these types of networks. This paper proposes a multiagent optimization memetic algorithm in complex networks to detect dynamic communities and calls it DYNMAMA (dynamic multiagent memetic algorithm). The temporal asymptotic surprise is used as an evaluation function of the algorithm. In the proposed algorithm, work is done on dynamic data. This algorithm does not need to specify the number of communities in advance and meets the time smoothing limit, and this applies to dynamic real-world and synthetic networks. The results of the performance of the evaluation function show that this proposed algorithm can find an optimal and more convergent solution compared to modern approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.