Over 20.000 umblical cord blood transplantations (UCBT) have been carried out around the world. Indeed, UCBT represents an attractive source of donor hematopoietic stem cells (HSCs) and, offer interesting features (e.g., lower graft-versus-host disease) compared to bone marrow transplantation (BMT). Thereby, UCBT often represents the unique curative option against several blood diseases. Recent advances in the field of UCBT, consisted to develop strategies to expand umbilical stem cells and shorter the timing of their engraftment, subsequently enhancing their availability for enhanced efficacy of transplantation into indicated patients with malignant diseases (e.g., leukemia) or non-malignant diseases (e.g., thalassemia major). Several studies showed that the expansion and homing of UCBSCs depends on specific biological factors and cell types (e.g., cytokines, neuropeptides, co-culture with stromal cells).
In this review, we extensively present the advantages and disadvantages of current hematopoietic stem cell transplantations (HSCTs), compared to UBCT. We further describe the importance of cord blood content and obstetric factors on cord blood selection, and report the recent approaches that can be undertook to improve cord blood stem cell expansion as well as engraftment. Eventually, we provide two majors examples underlining the importance of UCBT as a potential cure for blood diseases.
Interferon-β (IFN-β) is commonly used as a disease modifying drug for the treatment of relapse-remitting multiple sclerosis (RR-MS). However, the underlying mechanism by which IFN-β mediate this immunosuppressive effect is still unknown. In this study, we analyzed the effects of genetically modified adipose-derived mesenchymal stem cells (AD-MSCs) expressing murine interferon beta (MSCs-VP/IFN-β) on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Lymph node mononuclear cells and serum were examined by using RT-PCR and ELISA methods to measure the production of IL-10 and IL-17 gene and protein expression, respectively. Our results indicated that in the MSCs-VP/IFN-β treated group induction of Tregs and IL-10 and reduction of IL-17 were significant. Taken together, we showed that using AD-MSCs expressing IFN-β as an anti-inflammatory agent, offer evidence supporting that the stem cell therapies in EAE conceivably will improve the valuable effects of IFN-β in this autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.