We introduce a new class of optimal iterative methods without memory for approximating a simple root of a given nonlinear equation. The proposed class uses four function evaluations and one first derivative evaluation per iteration and it is therefore optimal in the sense of Kung and Traub's conjecture. We present the construction, convergence analysis and numerical implementations, as well as comparisons of accuracy and basins of attraction between our method and existing optimal methods for several test problems.
In this study, we present a new higher-order scheme without memory for simple zeros which has two major advantages. The first one is that each member of our scheme is derivative free and the second one is that the present scheme is capable of producing many new optimal family of eighth-order methods from every 4-order optimal derivative free scheme (available in the literature) whose first substep employs a Steffensen or a Steffensen-like method. In addition, the theoretical and computational properties of the present scheme are fully investigated along with the main theorem, which demonstrates the convergence order and asymptotic error constant. Moreover, the effectiveness of our scheme is tested on several real-life problems like Van der Waal’s, fractional transformation in a chemical reactor, chemical engineering, adiabatic flame temperature, etc. In comparison with the existing robust techniques, the iterative methods in the new family perform better in the considered test examples. The study of dynamics on the proposed iterative methods also confirms this fact via basins of attraction applied to a number of test functions.
In this paper, we present an iterative three-point method with memory based on the family of King's methods to solve nonlinear equations. This proposed method has eighth order convergence and costs only four function evaluations per iteration which supports the Kung-Traub conjecture on the optimal order of convergence. An acceleration of the convergence speed is achieved by an appropriate variation of a free parameter in each step. This self accelerator parameter is estimated using Newton's interpolation polynomial of fourth degree. The order of convergence is increased from 8 to 12 without any extra function evaluation. Consequently, this method, possesses a high computational efficiency. Finally, a numerical comparison of the proposed method with related methods shows its effectiveness and performance in high precision computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.