Biodesulfurization (BDS) is an environmentally friendly desulfurizing process with the potential of replacing or adding to the current expensive technologies for sulfur removal from fossil fuels. The BDS, however, still suffers from low biocatalyst activity. One reason is repression of dsz promoter transcription in presence of inorganic sulfate that impedes translation of Dsz enzymes required for desulfurization pathway. One approach to solve this problem is replacing the native promoter with a new promoter that is no longer repressed. In this study, dsz genes from desulfurizing strain Rhodococcus sp. FUM94 was cloned in an alkane responsive promoter, pCom8, and expressed in Escherichia coli BL21 (DE3) as a host. The recombinant was not susceptible to inorganic sulfate in the culture medium. Desulfurizing activity of recombinant strain versus wild type indicated that in a sulfate containing medium, BDS yield of recombinant increased from 16.0% ± 0.9 to 34.0% ± 1.9% when dibenzothiophene (DBT) concentration (dissolved in ethanol) increased from 25 to 100 ppm. Also, 2-hydroxy biphenyl (2-HBP) production rate improved 8.5-fold (from 0.302 ± 0.020 to 2.57 ± 0.14 mmol 2-HBP (kg DCW)-1 h-1) at the same DBT concentration range. This is while no 2-HBP production was detected in FUM94 biphasic reaction. In a sulfate-free medium, wild type strain demonstrated desulfurization activity, but decreasing with the increase of DBT concentration dissolved in n-tetradecane. Whereas, the recombinant strain demonstrated increasing desulfurizing activity in a sulfate-containing high DBT concentration environment. Overall, the result of this molecular manipulation can be considered as a step forward toward commercialization of BDS technology.
Numerous desulfurizing bacteria from the Rhodococcus genus harbor conserved dsz genes responsible for the degradation of sulfur compounds through 4S pathway. This study describes a newly identified desulfurizing bacterium, Rhodococcus sp. FUM94, which unlike previously identified strains encodes a truncated dsz operon. DNA sequencing revealed a frameshift mutation in the dszA gene, which led to an alteration of 66 amino acids and deletion of other C-terminal 66 amino acids. The resulting DszA polypeptide was shorter than DszA in Rhodococcus sp. IGTS8 reference strain. Despite the truncation, desulfurizing activity of the operon was observed and attributed to the removal of an overlap of dszA and dszB genes, and lack of active site in the altered region. Desulfurization experiments resulted in specific production rate of 6.3 mmol 2-hydroxy biphenyl (kgDCW) h at 2 g l biocatalyst concentration and 68.8% biodesulfurization yield at 20 g l biocatalyst concentration, both at 271 μM dibenzothiophene concentration which is comparable to similar wild-type biocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.