Trigonella foenum-graecum generally known as fenugreek, has been normally cultivated in Asia and Africa for the edible and medicinal values of its seeds. Fenugreek leaves and seeds have been used widely for therapeutic purposes. Fenugreek seed is recognized to show anti-diabetic and anti-nociceptive properties and other things such as hypocholesterolaemic, and anti-cancer. Diosgenin is a steroidal saponin from therapeutic herbs, fenugreek (T. foenum-graceum L.), has been well-known to have anticancer properties. Telomerase activity is not identified in usual healthy cells, while in carcinogenic cell telomerase expression is reactivated. Therefore telomerase illustrates a promising cancer therapeutic target. We deliberate the inhibitory effect of pure diosgenin and fenugreek extract diosgenin on human telomerase reverse transcriptase gene (hTERT) expression which is critical for telomerase activity. MTT-assay and qRT-PCR analysis were achieved to discover cytotoxicity effects and hTERT gene expression inhibition properties, separately. MTT results exhibited that IC50 for pure diosgenin were 47, 44 and 43 µM and for fenugreek extract diosgenin were 49, 48 and 47 µM for 24, 48 and 72 h after treatment. Culturing cells with pure diosgenin and fenugreek extract diosgenin treatment caused in down regulation of hTERT expression. These results indication that pure and impure diosgenin prevents telomerase activity by down regulation of the hTERT gene expression in A549 lung cancer cell line, with the difference that pure compound is more effective than another.
Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.
Background: Diosgenin, a steroidal saponin from a therapeutic herb, fenugreek (Trigonellafoenum-graceum L.), has been recognized to have anticancer properties. Telomerase activity is not detected in typical healthy cells, while in cancer cell telomerase expression is reactivated, therefore providing a promising cancer therapeutic target. Materials and Methods: We studied the inhibitory effect of diosgenin on human telomerase reverse transcriptase gene (hTERT) expression which is critical for telomerase activity. MTT-assays and qRT-PCR analysis were conducted to assess cytotoxicity and hTERT gene expression inhibition effects, respectively. Results: MTT results showed that IC 50 values for 24, 48 and 72h after treatment were 47, 44 and 43µM, respectively. Culturing cells with diosgenin treatment caused down-regulation of hTERT expression. Discussion: These results show that diosgenin inhibits telomerase activity by down-regulation of hTERT gene expression in the A549 lung cancer cell line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.