Background Between March and December, 2020, more than 20 000 laboratory-confirmed cases of SARS-CoV-2 infection were reported in Zambia. However, the number of SARS-CoV-2 infections is likely to be higher than the confirmed case counts because many infected people have mild or no symptoms, and limitations exist with regard to testing capacity and surveillance systems in Zambia. We aimed to estimate SARS-CoV-2 prevalence in six districts of Zambia in July, 2020, using a population-based household survey. Methods Between July 4 and July 27, 2020, we did a cross-sectional cluster-sample survey of households in six districts of Zambia. Within each district, 16 standardised enumeration areas were randomly selected as primary sampling units using probability proportional to size. 20 households from each standardised enumeration area were selected using simple random sampling. All members of selected households were eligible to participate. Consenting participants completed a questionnaire and were tested for SARS-CoV-2 infection using real-time PCR (rtPCR) and anti-SARS-CoV-2 antibodies using ELISA. Prevalence estimates, adjusted for the survey design, were calculated for each diagnostic test separately, and combined. We applied the prevalence estimates to census population projections for each district to derive the estimated number of SARS-CoV-2 infections. Findings Overall, 4258 people from 1866 households participated in the study. The median age of participants was 18•2 years (IQR 7•7-31•4) and 50•6% of participants were female. SARS-CoV-2 prevalence for the combined measure was 10•6% (95% CI 7•3-13•9). The rtPCR-positive prevalence was 7•6% (4•7-10•6) and ELISA-positive prevalence was 2•1% (1•1-3•1). An estimated 454 708 SARS-CoV-2 infections (95% CI 312 705-596 713) occurred in the six districts between March and July, 2020, compared with 4917 laboratory-confirmed cases reported in official statistics from the Zambia National Public Health Institute. Interpretation The estimated number of SARS-CoV-2 infections was much higher than the number of reported cases in six districts in Zambia. The high rtPCR-positive SARS-CoV-2 prevalence was consistent with observed community transmission during the study period. The low ELISA-positive SARS-CoV-2 prevalence might be associated with mitigation measures instituted after initial cases were reported in March, 2020. Zambia should monitor patterns of SARS-CoV-2 prevalence and promote measures that can reduce transmission. Funding US Centers for Disease Control and Prevention.
Highlights Whilst African countries were relatively spared initially when COVID-19 was first reported from China, the frequent travel links between China, Europe and Africa, meant importation of SARS-CoV-2 into Africa was inescapable. In preparation, Zambia had applied a multisectoral national epidemic disease surveillance and response system resulting in the identification of the first case within 48 hours of the individual entering the country by air travel from a trip to France. Phylogenomic analysis showed that the detected SARS-CoV-2 belonged to lineage B.1.1., sharing the last common ancestor with SARS-CoV-2 strains recovered from South Africa. At the African continental level, our analysis showed that lineage B.1 and B.1.1 lineages appear to be predominant in Africa. Whole genome sequence analysis should be part of all surveillance activities to monitor the origin and evolution of SARS-CoV-2 lineages across Africa.
Antimicrobial resistance is a growing global health concern. Antimicrobial stewardship (AMS) curbs resistance rates by encouraging rational antimicrobial use. However, data on antimicrobial stewardship in developing countries is scarce. The objective of this study was to characterize antimicrobial use at the University Teaching Hospital (UTH) in Lusaka, Zambia as a guiding step in the development of an AMS program. This was a cross-sectional, observational study evaluating antimicrobial appropriateness and consumption in non-critically ill adult medicine patients admitted to UTH. Appropriateness was defined as a composite measure based upon daily chart review. Sixty percent (88/146) of all adult patients admitted to the general wards had at least one antimicrobial ordered and were included in this study. The most commonly treated infectious diseases were tuberculosis, pneumonia, and septicemia. Treatment of drug sensitive tuberculosis is standardized in a four-drug combination pill of rifampicin, isoniazid, pyrazinamide and ethambutol, therefore appropriateness of therapy was not further evaluated. The most common antimicrobials ordered were cefotaxime (n = 45), ceftriaxone (n = 28), and metronidazole (n = 14). Overall, 67% of antimicrobial orders were inappropriately prescribed to some extent, largely driven by incorrect dose or frequency in patients with renal dysfunction. Antimicrobial prescribing among hospitalized patients at UTH is common and there is room for optimization of a majority of antimicrobial orders. Availability of certain antimicrobials must be taken into consideration during AMS program development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.