BackgroundThe strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies.ResultsThe hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells.ConclusionThe hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450.
Cholangiocarcinoma (CCA) is a bile duct cancer with a very poor prognosis. Currently, there is no effective pharmacological treatment available for it. We showed that CCA ubiquitously relies on cyclin-dependent kinases 4 and 6 (CDK4/6) activity to proliferate. Primary CCA tissues express high levels of cyclin D1 and the specific marker of CDK4/6 activity, phospho-RB Ser780. Treatment of a 15-CCA cell line collection by pharmacological CDK4/6 inhibitors leads to reduced numbers of cells in the S-phase and senescence in most of the CCA cell lines. We found that expression of retinoblastoma protein (pRB) is required for activity of the CDK4/6 inhibitor, and that loss of pRB conferred CDK4/6 inhibitor-drug resistance. We also identified that sensitivity of CCA to CDK4/6 inhibition is associated with the activated KRAS signature. Effectiveness of CDK4/6 inhibition for CCA was confirmed in the three-dimensional spheroid-, xenograft-, and patient-derived xenograft models. Last, we identified a list of genes whose expressions can be used to predict response to the CDK4/6 inhibitor. Conclusion: We investigated a ubiquitous dependency of CCA on CDK4/6 activity and the universal response to CDK4/6 inhibition. We propose that the CDK4/6-pRB pathway is a suitable therapeutic target for CCA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.