Abstract-This paper presents a rhombic patch monopole antenna applied with a technique of fractal geometry. The antenna has multiband operation in which the generator model, which is an initial model to create a fractal rhombic patch monopole, is inserted at each center side of a rhombic patch monopole antenna. Especially, a modified ground plane has been employed to improve input impedance bandwidth and high frequency radiation performance. The proposed antenna is designed and implemented to effectively support personal communication system (PCS 1.85-1.99 GHz), universal mobile telecommunication system (UMTS 1.92-2.17 GHz), wireless local area network (WLAN), which usually operate in the 2.4 GHz (2.4-2.484 GHz) and 5.2/5.8 GHz (5.15-5.35 GHz/5.725-5.825 GHz) bands, mobile worldwide interoperability for microwave access (Mobile WiMAX), and WiMAX, which operate in the 2.3/2.5 GHz (2.305-2.360 GHz/2.5-2.69 GHz) and 5.5 GHz (5.25-5.85 GHz) bands. The radiation patterns of the proposed antennas are similar to an omnidirectional radiation pattern. The properties of the antenna such as return losses, radiation patterns and gain are determined via numerical simulation and measurement.Corresponding author: C. Mahatthanajatuphat (cmp@kmutnb.ac.th).
58Mahatthanajatuphat et al.
Abstract-This paper presents a multiband slot antenna with modifying fractal geometry fed by coplanar waveguide (CPW) transmission line.The presented antenna has been designed by modifying an inner fractal patch of the antenna to operate at multiple resonant frequencies, which effectively supports the digital communication system (DCS 1.71-1.88 GHz), worldwide interoperability for microwave access (WiMAX 3.30-3.80 GHz), IMT advanced system or forth generation mobile communication system (3.40-4.2 GHz), and wireless local area network (WLAN 5.15-5.35 GHz). Manifestly, it has been found that the radiation patterns of the presented antenna are still similarly to the bidirectional radiation pattern at all operating frequencies. The properties of the antennas, for instance, return losses, radiation patterns and gain are determined via numerical simulation and measurement.Corresponding author: C. Mahatthanajatuphat (cmp@kmutnb.ac.th).
60Mahatthanajatuphat et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.