A technique for directivity improvement of the microstrip parallel-coupled lines using symmetric-centered inductors is presented in this paper. The design procedure of the symmetric-centered inductors using the closed-form equations is given. The proposed technique was performed with a design at the operating frequency of 0.9 GHz on an FR4 substrate. Validity of the proposed technique is verified by simulations and measurements in comparisons with conventional parallel-coupled lines. The measured results exhibit the isolation of -30.10 dB and directivity of 19.28 dB at the operating frequency of 0.9 GHz. The directivity from the measured results is improved by more than 4 dB at 0.9 GHz and more than 6 dB at 1.05 GHz compared with the conventional parallel-coupled lines. In addition, the proposed technique for the microstrip parallel-coupled line can achieve a high directivity with the compact size (21.0 mm x 4.70 mm). The novelty of this paper is by introducing the proposed and closed-form design equations for the compact symmetric-centered inductors with high directivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.