Innovations in pharmaceutical research are striving for designing newer drug therapies to eradicate deadly diseases. Strategies for such inventions always flourish with keys and objectives of minimal adverse effects and effective treatment. Recent trends in pharmaceutical technology specify that mucoadhesive drug delivery system is particularly appropriate than oral control release, for getting local systematic delivery of drugs in GIT for an extended interval of time at a predetermined rate. However, it is somehow expensive and unpleasant sensation for some patients, but still it is needful for getting short enzymatic activity, simple administration without pain and evasion of fast pass metabolism. Usually the vehicles employed in drug delivery of mucoadhesive system have a significant impact that draws further attention to potential benefits like improved bioavailability of therapeutic agents, extensive drug residence time at the site of administration and a comparatively faster drug uptake into the systemic circulation. The drug release from mucoadhesive multiparticulates is contingent on several types of factors comprising carrier need to produce the multiparticles and quantity of medication drug contained in them. Mucoadhesion is characterized by selected theories and mechanisms. Various strategies emergent in mucoadhesive multiparticulate drug delivery system (MMDDS) by in-vitro as well as ex-vivo description and characterization are also critically discussed. Apart from these, the primary focus during this review is to highlight current patents, clinical status, and regulatory policy for enhancement of mucoadhesive multi-particulate drug delivery system in the present scenario.
Objective: The study is to formulate the enalapril maleate-loaded mucoadhesive microspheres with varied compositions of selected polymers for developing the oral controlled release formulations prepared by ionic gelation method and optimization through central composite design.
Methods: Systematic optimization of microspheres was accomplished by the central composite design and characterized for particle size, entrapment efficiency, in vitro drug release and ex vivo mucoadhesion strength, which indicated that microspheres were a consequence to be spherical and free-flowing in nature. The microspheres exhibited high drug entrapment efficiency and in vitro drug release in a sustained manner, which was considered to be dependent on the concentration of rate-controlling polymers. The microspheres are showed 389.2 to 850 µm particle size and 22.36 to 85.22 % encapsulation efficiency. In vitro studies indicated optimized formulation showed 89.26% drug release after 12h and reduced blood pressure effectively.
Results: The pharmacokinetic parameters were evaluated with Cmax of 75.39 µg/ml, tmax of 8h, and AUC of 53.55 µg/hr/ml, elimination rate constant of 0.0392 and t1/2 of 10h. The stability studies were conducted for 3 mo under various conditions and identified no significant deviations in selected key quality attributes.
Conclusion: The formulated mucoadhesive microspheres of enalapril maleate tend to reduce the blood pressure in the animal model, with the novel drug delivery approach in the efficient management of hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.