Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.
Pitaya, commonly known as dragon fruit, has generated considerable consumer interest because of its attractive color and micronutrient content. The present study investigated the total polyphenol and flavonoid content, antioxidant activity against various free radicals, and antiproliferative effect on several cancer cell lines of extracts of flesh and peel of white and red pitayas, collected from Jeju Island, Korea. The total polyphenol and flavonoid contents of 80% methanol extracts of red pitaya peel (RPP) and white pitaya peel (WPP) were approximately 3- and 5-fold higher than those of red pitaya flesh (RPF) and white pitaya flesh (WPF), respectively. Overall, the total flavonoid and polyphenol contents of these extracts were RPP>WPP>RPF>WPF and WPP>RPP>RPF>WPF, respectively. In addition, a study involving nontargeted high-performance liquid chromatography coupled with a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI-MS) of different pitaya extracts indicated the presence of phenolic, hydroxycinnamic acid derivatives, flavonol glycosides, betacyanin, and its derivatives with a few unknown compounds. Separately, peel extracts of both red and white pitayas showed higher 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and alkyl radical-scavenging activity than did the corresponding flesh extracts. Both peel extracts also showed stronger antiproliferative activity against AGS and MCF-7 cancer cells than either flesh extract. There was a direct correlation between the phenolic content and antioxidant effect, but no correlation observed between antioxidant activity and antiproliferative activity. These results suggest that the peel of white and red pitaya may be a valuable ingredient in foods and may also be useful in cosmetic, nutraceutical, and pharmaceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.