The aim of this research is to investigate the relation between the surface roughness and the dynamic cutting force ratio during the in-process cutting in CNC turning process. The proposed surface roughness model is developed based on the experimentally obtained results by employing the exponential function with five factors of the cutting speed, the feed rate, the tool nose radius, the depth of cut, and the dynamic cutting force ratio. The dynamic cutting force ratio is proposed to predict the surface roughness during the cutting, which can be calculated and obtained by taking the ratio of the corresponding time records of the area of thedynamic feed force to that of the dynamic main force. The in-process relation between dynamic cutting force ratio and surface roughness can be proved by the frequency of the dynamic cutting force which corresponds to the surface roughnessfrequency. The multiple regression analysis is utilized to calculate the regression coefficients with the use of the least square method at 95% confident level. The proposed model has been verified by the new cutting tests. It is understood that the developed surface roughness model can be used to predict the in-process surface roughness with the high accuracy of 90.3% by utilizing the dynamic cutting force ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.