The purpose of this study was to determine the effect of the fitting window size used with the linear least squares fit method when quantitating trace elements with electron energy loss spectroscopy. Theory and computer simulation with a simple model of two 'signals' show that, when the background underlying the signal is slowly varying and the signal is localized, there exists a minimum window optimal for fitting raw spectra. The width of the minimum fitting window can be determined directly from the reference standard spectrum of the signal alone and the estimates of signal and background are related. Use of narrower than the minimum window will increase the fitting uncertainty of the signal and yield less reliable results. More complicated experimental spectra must be fitted to more than two standards and a simple analytical expression of the minimum fitting window cannot be derived, but can be determined empirically. Our study shows that the empirical value obtained from experimental spectra is only slightly larger than the theoretical value derived from the simple model, indicating that this conclusion is still valid. When fitting difference spectra with a slowly varying background, the estimates of signal and background are independent and windows wider than the size of the signal will yield the same fitting uncertainty. In the presence of a non-slowly varying background, common in difference spectra, the minimum window size depends on the fine structure of the signal and the background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.