MhuD is a protein found in mycobacteria that can bind up to two heme molecules per protein monomer and catalyze the degradation of heme to mycobilin in vitro. Here the Kd1 for heme dissociation from heme-bound MhuD was determined to be 7.6 ± 0.8 nM and the Kd2 for heme dissocation from diheme-bound MhuD was determined to be 3.3 ± 1.1 μM. These data strongly suggest that MhuD is a competent heme oxygenase in vivo.
A fundamental question in the field of astrochemistry is whether the molecules essential to life originated in the interstellar medium (ISM) and, if so, how they were formed. Nitrogencontaining heterocycles are of particular interest because of their role in biology, but to date no N-heterocycle has been detected in the ISM and it is unclear how and where such species might form. Recently, the β-cyanovinyl radical (HCCHCN) was implicated in the low temperature gas-phase formation of pyridine. While neutral vinyl cyanide (H 2 CCHCN) has been rotationally characterized and detected in the ISM, HCCHCN has not. Here we present the first theoretical study of all three cyanovinyl isomers at the CCSD(T)/ANO1 level of theory and the experimental rotational spectra of cisand trans-HCCHCN, as well as those of their 15 N isotopologues, from 5 to 75 GHz. The observed spectra are in good agreement with calculations, and provide a basis for further laboratory and astronomical investigations of these radicals.
Automation of rate-coefficient calculations for gas-phase organic species became possible in recent years and has transformed how we explore these complicated systems computationally. Kinetics workflow tools bring rigor and speed and eliminate a large fraction of manual labor and related error sources. In this paper we give an overview of this quickly evolving field and illustrate, through five detailed examples, the capabilities of our own automated tool, KinBot. We bring examples from combustion and atmospheric chemistry of C-, H-, O-, and N-atom-containing species that are relevant to molecular weight growth and autoxidation processes. The examples shed light on the capabilities of automation and also highlight particular challenges associated with the various chemical systems that need to be addressed in future work.
Pyrrolyl (C 4 H 4 N) is a nitrogen-containing aromatic radical that is a derivative of pyrrole (C 4 H 5 N) and is an important intermediate in the combustion of biomass. It is also relevant for chemistry in Titan's atmosphere and may be present in the interstellar medium. The lowest-energy isomer, 1-pyrrolyl, has been involved in many experimental and theoretical studies of the N -H photodissociation of pyrrole, yet it has only been directly spectroscopically detected via electron paramagnetic resonance and through the photoelectron spectrum of the pyrrolide anion, yielding three vibrational frequencies. No direct measurements of 2-or 3-pyrrolyl have been made, and little information is known from theoretical calculations beyond their relative energies. Here, we present an ab initio quantum chemical characterization of the three pyrrolyl isomers at the CCSD(T) level of theory in their ground electronic states, with an emphasis on spectroscopic parameters relevant for vibrational and rotational spectroscopy. Equilibrium geometries were optimized at the CCSD(T)/cc-pwCVTZ level of theory, and the quadratic, cubic, and partial quartic force constants were evaluated at CCSD(T)/ANO0 for analysis using second-order vibrational perturbation theory to obtain harmonic and anharmonic vibrational frequencies. In addition, zero-pointcorrected rotational constants, electronic spin-rotation tensors, and nuclear hyperfine tensors are calculated for rotational spectroscopy. Our computed structures and energies agree well with earlier density functional theory calculations, and spectroscopic parameters for 1-pyrrolyl are compared with the limited existing experimental data. Finally, we discuss strategies for detecting these radicals using rotational and vibrational spectroscopy on the basis of the calculated spectroscopic constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.