This work reports on a comparative study comprising three transition metal oxides, MoO 3 , WO 3 and V 2 O 5 , acting as front p-type emitters for n-type crystalline silicon heterojunction solar cells. Owing to their high work functions (>5 eV) and wide energy band gaps, these oxides act as transparent hole-selective contacts with semiconductive properties that are determined by oxygen-vacancy defects (MoO 3-x ), as confirmed by x-ray photoelectron spectroscopy. In the fabricated hybrid structures, 15 nm thick transition metal oxide layers were deposited by vacuum thermal evaporation. Of all three devices, the V 2 O 5 /n-silicon heterojunction performed the best with a conversion efficiency of 15.7% and an open-circuit voltage of 606 mV, followed by MoO 3 (13.6%) and WO 3 (12.5%). These results bring into view a new silicon heterojunction solar cell concept with advantages such as the absence of toxic dopant gases and a simplified low-temperature fabrication process.
During the last decade, transition metal oxides have been actively investigated as hole-and electron-selective materials in organic electronics due to their low-cost processing. In this study, four transition metal oxides (V2O5, MoO3, WO3, and ReO3) with high work functions (>5 eV) were thermally evaporated as front p-type contacts in planar n-type crystalline silicon heterojunction solar cells. The concentration of oxygen vacancies in MoO3−x was found to be dependent on film thickness and redox conditions, as determined by X-ray Photoelectron Spectroscopy. Transfer length method measurements of oxide films deposited on glass yielded high sheet resistances (~10 9 Ω/sq), although lower values (~10 4 Ω/sq) were measured for oxides deposited on silicon, indicating the presence of an inversion (hole rich) layer. Of the four oxide/silicon solar cells, ReO3 was found to be unstable upon air exposure, while V2O5 achieved the highest open-circuit voltage (593 mV) and conversion efficiency (12.7%), followed by MoO3 (581 mV, 12.6%) and WO3 (570 mV, 11.8%). A short-circuit current gain of ~0.5 mA/cm 2 was obtained when compared to a reference amorphous silicon contact, as expected from a wider energy bandgap. Overall, these results support the viability of a simplified solar cell design, processed at low temperature and without dopants.
The synthesis of single‐crystalline β‐CsPbI3 perovskite nanorods (NRs) using a colloidal process is reported, exhibiting their improved photostability under 45–55% humidity. The crystal structure of CsPbI3 NRs films is investigated using Rietveld refined X‐ray diffraction (XRD) patterns to determine crystallographic parameters and the phase transformation from orthorhombic (γ‐CsPbI3) to tetragonal (β‐CsPbI3) on annealing at 150 °C. Atomic resolution transmission electron microscopy images are utilized to determine the probable atomic distribution of Cs, Pb, and I atoms in a single β‐phase CsPbI3 NR, in agreement with the XRD structure and selected area electron diffraction pattern, indicating the growth of single crystalline β‐CsPbI3 NR. The calculation of the electronic band structure of tetragonal β‐CsPbI3 using density functional theory (DFT) reveals a direct transition with a lower band gap and a higher absorption coefficient in the solar spectrum, as compared to its γ‐phase. An air‐stable (45–55% humidity) inverted perovskite solar cell, employing β‐CsPbI3 NRs without any encapsulation, yields an efficiency of 7.3% with 78% enhancement over the γ‐phase, showing its potential for future low cost photovoltaic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.