The tomato (Solanum lycopersicum L.) is one of the most important vegetables grown globally. However, the production of tomatoes is restricted by Fusarium oxysporum f. sp. lycopersici (Fol). This study aims to investigate the ability of Fol-resistant tomato genotypes to be a rootstock for the susceptible cultivar. In this study, a tomato cultivar was grafted on rootstocks of the same species (intraspecific), and grafting compatibility, peroxidase gene expression, and fusarium wilt disease incidence of tomato scion was evaluated. A Fol-susceptible tomato ‘Sidathip 3’ (SDT3) was grafted onto four different Fol-resistant tomato genotypes and compared with self-grafted cultivar/cultivar and rootstock/rootstock. The survival rate of all grafted plants was 100% at 20 days after grafting (DAG) without significant differences in incompatibility evaluated at 42 days after grafting. The expression of the peroxidase gene (Solyc02g084800.2) using the qPCR technique was compared in self-grafted rootstock LE472/LE472 and SDT3/LE472. The expression level was three times higher in heterografted plants than in self-grafted ones at 15 DAG, indicating graft incompatibility. The rootstocks did not affect the height of the plant, the number of branches, the size of the fruit, or the yield of SDT3 scion. All intraspecific heterografted plants significantly controlled Fol when evaluated 60 days after inoculation. These results showed the usefulness of intraspecific grafting by using the proper rootstock genotypes to increase pathogen resistance in addition to stimulating growth and fruit yield.
Tomato Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici (Fol) constrains tomato production worldwide. Three hundred forty tomato accessions were evaluated for Fusarium wilt resistance and single nucleotide polymorphisms (SNPs) associated with resistance. The disease resistance evaluation revealed that 15, 13, and 15 accessions were identified as Fusarium wilt resistant in Test 1, 2, and Mean data, respectively, with the disease severity index (DSI) ranging from 0-16.7%. A genome-wide association study (GWAS) identified SNPs associated with resistance. Eighteen common SNPs were detected in at least two tests and located on chromosomes 4, 6, 7, 9, and 12. Six unique significant SNPs were found in either Test 1 or 2, located on chromosomes 2, 4, and 7. Candidate genes associated with Fusarium wilt resistance were identified. Notably, two genes encoding leucine-rich repeat-like protein and diseaseresistance protein were predicted from the two unique SNPs, solDsnp10606 and solDsnp6266, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.