Coconut milk (CCM) has been an important cooking ingredient in the Asia-Pacific region since ancient time. Due to its high content of saturated fatty acids, it has been considered atherogenic. We have tested if chronic consumption of fresh coconut milk by middle-aged male rat affects vascular function, plasma glucose and lipid profiles. Compared to control, CCM caused lower maximal contraction to phenylephrine of thoracic aortic rings and increased relaxation to acetylcholine that was abolished by N G -nitro-L-arginine (L-NA) or disruption of the endothelium. DL-propargylglycine caused slight increase in baseline tension of L-NA treated aortic rings of CCM-treated rats and produced higher contractile response of the aortic rings to low concentrations of phenylephrine. The aortic eNOS-and cystathionine-γ-lyase(CSE) proteins expression of the CCM-treated rats were also higher than in controls. Except for lower fasting plasma glucose there were no changes in blood chemistry for the CCM treated rats. CCM consumption caused up-regulation of eNOS and CSE protein expression which resulted in increased production of NO and H 2 S from the blood vessels with attenuation of vasocontraction to phenylephrine and increased relaxation to acetylcholine. These novel benefits may be expected to reduce the development of cardiovascular risk factors in the aging rat.
Effects of treatment of middle-aged male rats with 3, 5, 7, 3', 4'-pentamethoxyflavone (PMF) on vascular and perivascular adipose tissue (PVAT) functions and blood chemistry were investigated. Rats received PMF (22 mg/kg), orally or vehicle, twice a day for 6 weeks. The PMF-treated rats had lower serum glucose, higher HDL-C levels, but no change in other parameters. Thoracic aortic and mesenteric rings of PMF treated rats produced lower maximal contraction to phenylephrine that was normalized by N-nitro-L-arginine (L-NA) or endothelial removal. The aortic- and mesenteric rings of the PMF treated rats showed improved relaxation to acetylcholine, but not to glyceryl trinitrate, and had higher eNOS protein. DL-propargylglycine (PAG) caused greater increase in the baseline tension of the PMF-treated aortic ring and higher contraction to low concentrations of phenylephrine. PVAT lowered the contractile response of the L-NA pretreated aortic rings to phenylephrine for both groups, but PAG had no effect. The cystathionine-γ-lyase (CSE) protein of the thoracic rings, but not of the PVAT, shows increased expression after PMF treatment. Overall, PMF treatment of middle aged rats appeared to increase production of NO and HS from the blood vessels by upregulating the expression of eNOS and CSE. PMF also decreased fasting serum glucose and increased HDL-C levels, with no toxicity to liver and kidney functions. Thus, PMF is a novel compound for possible use as a health product to prevent and/or to reduce the development of diabetes type II and/or cardiovascular disease.
We investigated whether coconut milk protein (CMP) contributes to the beneficial effects of coconut milk consumption on cardiovascular health markers previously found in middle-aged rats. CMP was isolated and precipitated from dried fresh coconut milk, then gavaged (1 g/kg) to middle-aged male rats for six weeks; control rats received distilled water. Compared to controls, CMP caused decreased body fat and lipid accumulation in liver cells and the platelet count. CMP did not affect basal blood pressure or heart rate in anesthetized rats. Vascular responsiveness to phenylephrine, DL-propargylglycine (PAG), acetylcholine or sodium nitroprusside was unaffected, but vasorelaxation to glyceryl trinitrate (GTN) increased. Effects of ODQ on vasorelaxation to GTN were similar in both groups. Expression of blood vessel eNOS, CSE and sGC was normal. The cyclic guanosine monophosphate (cGMP) level of CMP-treated rats was normal but addition of GTN increased cGMP and NO concentration more in CMP-treated rats than in controls, an effect unaltered by addition of diadzin. Taken together, CMP appears partially responsible for the improvement in cardiovascular health markers caused by coconut milk in middle-aged male rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.