Haemophilus parasuis is the causative agent of the Glässer’s disease (GD), one of the most important bacterial diseases that affect young pigs worldwide. GD prevention based on vaccination is a major concern due to the limited cross-protection conferred by the inactivated whole cell vaccines used currently. In this study, vaccines based on two mutant recombinant proteins derived from transferrin binding protein B of H. parasuis (Y167A-TbpB and W176A-TbpB) were formulated and evaluated in terms of protection against lethal challenge using a serovar 7 (SV7) H. parasuis in a high susceptibility pig model. Our results showed that H. parasuis strain 174 (SV7) is highly virulent in conventional and colostrum-deprived pigs. The Y167A-TbpB and W176A-TbpB antigens were immunogenic in pigs, however, differences in terms of antigenicity and functional immune response were observed. In regard to protection, animals immunized with Y167A-TbpB antigen displayed 80% survival whereas the W176A-TbpB protein was not protective. In conjunction with previous studies, our results demonstrate, (a) the importance of testing engineered antigens in an in vivo pig challenge model, and, (b) that the Y167A-TbpB antigen is a promising antigen for developing a broad-spectrum vaccine against H. parasuis infection.
There has been substantial interest in the development of needle-free vaccine administration that has led to a variety of approaches for delivery through the skin for induction of a systemic immune response. The mucosal administration of vaccines has inherently been needle-free, but the simple application of vaccines on the mucosal surface by itself does not lead to mucosal immunity. Since many important bacterial infections develop after initial colonization of the upper respiratory tract of the host, prevention of colonization could not only prevent infection but also eliminate the reservoir of pathogens that reside exclusively in that ecologic niche. This study was designed to provide proof of concept for a needle-free immunization approach that would reduce or eliminate colonization and prevent infection. In order to accomplish this a microparticle vaccine preparation was delivered just below the oral mucosal epithelial cell layer where it would lead to a robust immune response. A vaccine antigen (mutant transferrin binding protein B) shown to be capable of preventing infection in pigs was incorporated into a polyphosphazene microparticle preparation and delivered by a needle-free device to the oral sub-epithelial space of pigs. This vaccination regimen not only provided complete protection from infection after intranasal challenge by Glaesserella parasuis but also eliminated natural colonization by this bacterium. Notably, the complete prevention of natural colonization was dependent upon delivery of the microparticle preparation below the epithelial layer in the oral mucosa as intradermal or intramuscular delivery was not as effective at preventing natural colonization. This study also demonstrated that a primary immunization in the presence of maternal antibody limited the resulting antibody response but a robust antibody response after the second immunization indicated that maternal antibody did not prevent induction of B-cell memory.
The surface transferrin receptor proteins from Neisseria gonorrhoeae have been recognized as ideal vaccine targets due to their critical role in survival in the human male genitourinary tract. Recombinant forms of the surface lipoprotein component of the receptor, transferrin binding protein B (TbpB), can be readily produced at high levels in the Escherichia coli cytoplasm and is suitable for commercial vaccine production. In contrast, the integral outer membrane protein, transferrin binding protein A (TbpA), is produced at relatively low levels in the outer membrane and requires detergents for solubilization and stabilization, processes not favorable for commercial applications. Capitalizing on the core β-barrel structural feature common to the lipoprotein and integral outer membrane protein we engineered the lipoprotein as a scaffold for displaying conserved surface epitopes from TbpA. A stable version of the C-terminal domain of TbpB was prepared by replacing four larger exposed variable loops with short linking peptide regions. Four surface regions from the plug and barrel domains of Neisseria TbpA were transplanted onto this TbpB C-lobe scaffold, generating stable hybrid antigens. Antisera generated in mice and rabbits against the hybrid antigens recognized TbpA at the surface of Neisseria meningitidis and inhibited transferrin-dependent growth at levels comparable or better than antisera directed against the native TbpA protein. Two of the engineered hybrid antigens each elicited a TbpA-specific bactericidal antibody response comparable to that induced by TbpA. A hybrid antigen generated using a foreign scaffold (TbpB from the pig pathogen Haemophilus parasuis) displaying neisserial TbpA loop 10 was evaluated in a model of lower genital tract colonization by N. gonorrhoeae and a model of invasive infection by N. meningitidis . The loop 10 hybrid antigen was as effective as full length TbpA in eliminating N. gonorrhoeae from the lower genital tract of female mice and was protective against the low dose invasive infection by N. meningitidis . These results demonstrate that TbpB or its derivatives can serve as an effective scaffold for displaying surface epitopes of integral outer membrane antigens and these antigens can elicit protection against bacterial challenge.
Acinetobacter baumannii is an important human pathogen causing substantial mortality in hospitalized patients for which treatment with antibiotics has become problematic due to growing antibiotic resistance. In an attempt to develop alternative strategies for dealing with these serious infections surface antigens are being considered as targets for vaccines or immunotherapy. The surface receptor proteins required for zinc acquisition in Gram-negative bacterial pathogens have been proposed as vaccine targets due to their crucial role for growth in the human host. In this study we selected the putative ZnuD outer membrane receptor from A. baumannii as a target for vaccine development. Due to challenges in production of an integral outer membrane protein for vaccine production, we adopted a recently described hybrid antigen approach in which surface epitopes from the Neisseria meningitidis TbpA receptor protein were displayed on a derivative of the C-lobe of the surface lipoprotein TbpB, named the loopless C-lobe (LCL). A structural model for ZnuD was generated and four surface loops were selected for hybrid antigen production by computational approaches. Hybrid antigens were designed displaying the four selected loops (2, 5, 7, and 11) individually or together in a single hybrid antigen. The hybrid antigens along with ZnuD and the LCL scaffold were produced in the E. coli cytoplasm either as soluble antigens or as inclusion bodies, that were used to generate soluble antigens upon refolding. Mice were immunized with the hybrid antigens, ZnuD or LCL and then used in an A. baumannii sepsis model to evaluate their ability to protect against infection. As expected, the LCL scaffold did not induce a protective immune response, enabling us to attribute observed protection to the displayed loops. Immunization with the refolded ZnuD protein protected 63% of the mice while immunization with hybrid antigens displaying individual loops achieved between 25 and 50% protection. Notably, the mice immunized with the hybrid antigen displaying the four loops were completely protected from infection.
Glaesserella parasuis is a Gram-negative bacterium that causes Glässer's disease, a common pathology found in young pigs characterized by polyarthritis, polyserositis, and meningitis. The bacterium has 15 known serovars that have been classified by virulence. Serovars 1, 4, 5, and 12 are considered highly virulent and used in most studies. Serovars 3, 6, 7, 9, and 11 are considered avirulent. Recent reports that serovar 7 is an emerging problem in the pig industry indicate that the association of virulence and serovar may not always be reliable. This led us to infect colostrum-deprived piglets with the reference serovar 7 strain (SV7 strain 174) that had been passaged through pigs and characterize the clinical and pathological signs. We observed that SV7 strain 174 caused clinical signs consistent with Glässer's disease in all infected piglets that succumbed to infection for up to day 5 post-infection. Macroscopic and microscopic lesions were consistent with those found in piglets infected with conventional virulent serovars. In addition, we describe novel microscopic lesions associated with Glässer's disease such as endophthalmitis and thymic depletion. Thus, our findings indicate that SV7 strain 174 causes classical signs of Glässer's disease in colostrum-deprived piglets and some caution should be used in employing vaccine strategies based on association between capsular serovar and virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.