Lignocellulosic biomass generated from different sectors (agriculture, forestry, industrial) act as biorefinery precursor for production of second-generation (2G) bioethanol and other biochemicals. The integration of various conversion techniques on a single platform under biorefinery approach for production of biofuel and industrially important chemicals from LCB is gaining interest worldwide. The waste generated on utilization of bio-resources is almost negligible or zero in a biorefinery along with reduced greenhouse gas emissions, which supports the circular bioeconomy concept. The economic viability of a lignocellulosic biorefinery depends upon the efficient utilization of three major components of LCB—cellulose, hemicellulose and lignin. The heterogeneous structure and recalcitrant nature of LCB is main obstacle in its valorization into bioethanol and other value-added products. The success of bioconversion process depends upon methods used during pre-treatment, hydrolysis and fermentation processes. The cost involved in each step of the bioconversion process affects the viability of cellulosic ethanol. The lignocellulose biorefinery has ample scope, but much-focused research is required to fully utilize major parts of lignocellulosic biomass with zero wastage. The present review entails lignocellulosic biomass valorization for ethanol production, along with different steps involved in its production. Various value-added products produced from LCB components were also discussed. Recent technological advances and significant challenges in bioethanol production are also highlighted in addition to future perspectives.
Graphical abstract
The increasing prevalence of environmental pollution, especially soil contamination with heavy metals has led to their uptake in the human food chains through plant parts. Accumulation and magnification of heavy metals in human tissues through consumption of herbal remedies can cause hazardous impacts on health. Therefore, chemical profiling of nine heavy metals (Mn, Cr, Pb, Fe, Cd, Co, Zn, Ni and Hg) was undertaken in stem and leaf samples of ten medicinal plants (Acacia nilotica, Bacopa monnieri, Commiphora wightii, Ficus religiosa, Glycyrrhiza glabra, Hemidesmus indicus, Salvadora oleoides, Terminalia bellirica, Terminalia chebula and Withania somnifera) collected from environmentally diverse regions of Haryana and Rajasthan states in North-Western India. Concentration of all heavy metals, except Cr, was within permissible limits in the tested stem and leaf samples. Leaf samples had consistently more Cr compared to respective stem samples with highest concentration in leaf samples of Bacopa monnieri (13.19 ± 0.0480 ppm) and stem samples of Withania somnifera (4.93 ± 0.0185 ppm) both collected from Bahadurgarh (heavy industrial area), Haryana. This amount was beyond the permissible limit of 2.0 ppm defined by WHO for raw herbal material. Other two most perilous metals Pb (2.64 ± 0.0260) and Cd (0.04 ± 0.0274) were also recorded in Bahadurgarh region, although below permissible limits. Concentration of Hg remained below detectable levels in all the leaf and stem samples tested. These results suggested that cultivation of medicinal plants and other dietary herbs should be curtailed near environmentally polluted especially industrial areas for avoidance of health hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.