The degradation of air quality is the most concerned issue of our society due to its harmful impacts on human health, especially in cities with rapid urbanization and population growth like Hanoi, the capital of Vietnam. This study aims at developing a new approach that combines data-driven models and interpolation technique to develop the PM10 concentration maps from meteorological factors for the central area of Hanoi. Data-driven models that relate the PM10 concentration with the meteorological factors at the air quality monitoring stations in the study area were developed using the Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) algorithms. Models’ performance comparison showed that ANN models yielded better goodness-of-fit indices than MLR models at all stations in the study area with average coefficient of correlation (r) and Nash–Sutcliffe Efficiency Index (NSE) of 0.51 and 0.34 for the former, and 0.7 and 0.49 for the latter. These indices indicates that the ANN-based data-driven models outperformed the MLR-based models. Thus, the ANN-based models and the Inverse Distance Weighting (IDW) interpolation technique were then combined for mapping the monthly PM10 concentration with a spatial resolution of 1 km from global meteorological data. With this combination, the PM10 concentration maps account for both local PM10 concentration and impacts of spatio-temporal variations of meteorological factors on the PM10 concentration. This study provides a promising method to predict the PM concentration with a high spatio-temporal resolution from meteorological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.