We present a real-time light detection and ranging (LIDAR) imaging by developing a single-chip solid-state beam scanner. The beam scanner is integrated with a fully functional 32-channel optical phased array, 36 optical amplifiers, and a tunable laser at central wavelength ~1310 nm, all on a 7.5 󠇎× 3 mm 2 single chip fabricated with III-V on silicon processes. The phased array is calibrated with self-evolving genetic algorithm to enable beam forming and steering in two dimensions. Distance measurement is performed with a digital signal processing that measures the time of flight (TOF) of pulsed light with a system consisting of an avalanche photodiode (APD), trans-impedance amplifier (TIA), analog-digital converter (ADC), and a processor. The LIDAR module utilizing this system can acquire point cloud images with 120 × 20 resolution with a speed of 20 frames per seconds at a distance up to 20 meters. This work presents the first demonstration of a chip-scale LIDAR solution without any moving part or bulk external light source or amplifier, making an ultralow cost and compact LIDAR technology a reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.