Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. Here we show that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A strong loss-of-function mutation in PAPS1 causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth that results in part from a constitutive pathogen response. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. This suggests the existence of an additional layer of regulation in plant and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs.
Background Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. Results We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. Conclusions We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.
The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.