Abstract. As the number of scientific papers getting published is likely to soar, most of modern paper management systems (e.g. ScienceWise, Mendeley, CiteULike) support tag-based retrieval. In that, each paper is associated with a set of tags, allowing user to search for relevant papers by formulating tag-based queries against the system. One of the most critical issues in tag-based retrieval is that user often has difficulties in precisely formulating his information need. Addressing this issue, our paper tackles the problem of automatically suggesting new tags for user when he formulates a query. The set of tags are selected in such a way that resolves query ambiguity in two aspects: informativeness and diversity. While the former reduces user effort in finding the desired papers, the latter enhances the variety of information shown to user. Through studying theoretical properties of this problem, we propose a heuristic-based algorithm with several salient performance guarantees. We also demonstrate the efficiency of our approach through extensive experimentation using real-world datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.