This study focused on the removal of arsenic from simulated groundwater by batch adsorption using iron-modified rice husk carbon (RH-Fe). The results showed that RH-Fe was very effective in the removal of arsenic not only at low and moderate initial concentrations of arsenic (1.42 and 2.77 mg/L) but also at very high initial concentrations of arsenic (4.61 and 7.38 mg/L). The arsenic adsorption by RH-Fe was dependent on pH and varied with arsenic initial concentration and adsorbent dose. Langmuir isotherm could describe the adsorption equilibrium and the adsorption capacity was found to be 2.24mg/g. The pseudo-second order kinetic model gave the best fit with the experimental data.
Groundwater is one of the most important sources for drinking water. Arsenic (As) contamination of groundwater is a serious problem worldwide, especially in Bangladesh, India and South East Asia. Adsorption using appropriate and readily available adsorbents is a promising method for the removal of arsenic with applicability in rural areas. This work aims to study the removal of arsenic from synthetic groundwater using an adsorption column by sequential combination of laterite (LA) and iron-modified activated carbon (AC-Fe) as adsorbents. The effect of ratio LA/AC-Fe, flow rate, initial arsenic concentration and pH to the breakthrough time were investigated. Adsorption equilibrium and adsorption kinetics were also studied through batch experiment. The result was found to be an efficient and feasible approach for arsenic treatment from groundwater for ready applicability in rural areas.
This work aims to investigate the removal of arsenic from the simulated groundwater by batch adsorption using Iron (ZVI) and Iron[III] Oxide (IO). The effect of initial arsenic concentration, adsorbent dose and pH were investigated. Adsorption equilibrium and its kinetics were also studied. The results showed that both ZVI and IO have a high efficiency for adsorption of arsenic from groundwater. Langmuir isotherm described well the adsorption equilibrium and the pseudo-second order kinetic model gave the best fit with the experimental kinetic data for both ZVI and IO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.