Carbonic
anhydrase IX (CAIX) is a transmembrane enzyme that regulates
pH in hypoxic tumors and promotes tumor cell survival. Its expression
is associated with the occurrence of metastases and poor prognosis.
Here, we present nine derivatives of the cobalt bis(dicarbollide)(1−)
anion substituted at the boron or carbon sites by alkysulfamide group(s)
as highly specific and selective inhibitors of CAIX. Interactions
of these compounds with the active site of CAIX were explored on the
atomic level using protein crystallography. Two selected derivatives
display subnanomolar or picomolar inhibition constants and high selectivity
for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives
had a time-dependent effect on the growth of multicellular spheroids
of HT-29 and HCT116 colorectal cancer cells, facilitated penetration
and/or accumulation of doxorubicin into spheroids, and displayed low
toxicity and showed promising pharmacokinetics and a significant inhibitory
effect on tumor growth in syngenic breast 4T1 and colorectal HT-29
cancer xenotransplants.
Two isomeric series of new thieno-fused 7-deazapurine ribonucleosides (derived from 4-substituted thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidines and thieno[3',2':4,5]pyrrolo[2,3-d]pyrimidines) were synthesized by a sequence involving Negishi coupling of 4,6-dichloropyrimidine with iodothiophenes, nucleophilic azidation, and cyclization of tetrazolopyrimidines, followed by glycosylation and cross-couplings or nucleophilic substitutions at position 4. Most nucleosides (from both isomeric series) exerted low micromolar or submicromolar in vitro cytostatic activities against a broad panel of cancer and leukemia cell lines and some antiviral activity against HCV. The most active were the 6-methoxy, 6-methylsulfanyl, and 6-methyl derivatives, which were highly active to cancer cells and less toxic or nontoxic to fibroblasts.
Three series of isomeric pyrrolo-and furo-fused 7deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2′,3′:4,5]pyrrolo[2,3-d]pyrimidine and furo[2′,3′:4,5]pyrrolo-[2,3-d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3′,2′,4,5]pyrrolo[2,3-d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
All four isomeric series of novel 4-substituted pyrido-fused 7-deazapurine ribonucleosides possessing the pyridine nitrogen atom at different positions were designed and synthesized. The total synthesis of each isomeric fused heterocycle through multistep heterocyclizationw as followed by glycosylation and derivatization at position 4b y cross-coupling reactions or nucleophilic substitutions. All compoundsw ere tested for cytostatic and antiviral activity. The most active werep yrido[4',3':4,5]pyrimidine nucleosides bearing MeO, NH 2 ,M eS, or CH 3 groups at position 4, which showed submicromolar cytotoxic effects and good selectivity for cancer cells. The mechanism involved activation by phosphorylation and incorporation to DNA where the presence of the modified ribonucleosides causes double-strand breaksa nd apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.