BackgroundThe renin–angiotensin system has a pivotal role in the pathophysiology of visceral obesity. Angiotensin II type 1 receptor (AT1R) is a major player in the signal transduction of the renin–angiotensin system, and the overactivation of this signaling contributes to the progression of visceral obesity. We have shown that the AT1R‐associated protein (ATRAP) promotes AT1R internalization from the cell surface into cytoplasm along with the suppression of overactivation of tissue AT1R signaling. In this study, we examined whether the enhancement of adipose ATRAP expression could efficiently prevent diet‐induced visceral obesity and insulin resistance.Methods and ResultsWe generated adipocyte‐specific ATRAP transgenic mice using a 5.4‐kb adiponectin promoter, and transgenic mice and littermate control mice were fed either a low‐ or high‐fat diet for 10 weeks. Although the physiological phenotypes of the transgenic and control mice fed a low‐fat diet were comparable, the transgenic mice exhibited significant protection against high‐fat diet–induced adiposity, adipocyte hypertrophy, and insulin resistance concomitant with an attenuation of adipose inflammation, macrophage infiltration, and adipokine dysregulation. In addition, when mice were fed a high‐fat diet, the adipose expression of glucose transporter type 4 was significantly elevated and the level of adipose phospho‐p38 mitogen‐activated protein kinase was significantly attenuated in the transgenic mice compared with control mice.ConclusionsResults presented in this study suggested that the enhancement in adipose ATRAP plays a protective role against the development of diet‐induced visceral obesity and insulin resistance through improvement of adipose inflammation and function via the suppression of overactivation of adipose AT1R signaling. Consequently, adipose tissue ATRAP is suggested to be an effective therapeutic target for the treatment of visceral obesity.
BackgroundThe kidney is easily affected by aging‐associated changes, including glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Particularly, renal tubulointerstitial fibrosis is a final common pathway in most forms of progressive renal disease. Angiotensin II type 1 receptor (AT1R)‐associated protein (ATRAP), which was originally identified as a molecule that binds to AT1R, is highly expressed in the kidney. Previously, we have shown that ATRAP suppresses hyperactivation of AT1R signaling, but does not affect physiological AT1R signaling.Methods and ResultsWe hypothesized that ATRAP has a novel functional role in the physiological age‐degenerative process, independent of modulation of AT1R signaling. ATRAP‐knockout mice were used to study the functional involvement of ATRAP in the aging. ATRAP‐knockout mice exhibit a normal age‐associated appearance without any evident alterations in physiological parameters, including blood pressure and cardiovascular and metabolic phenotypes. However, in ATRAP‐knockout mice compared with wild‐type mice, the following takes place: (1) age‐associated renal function decline and tubulointerstitial fibrosis are more enhanced; (2) renal tubular mitochondrial abnormalities and subsequent increases in the production of reactive oxygen species are more advanced; and (3) life span is 18.4% shorter (median life span, 100.4 versus 123.1 weeks). As a key mechanism, age‐related pathological changes in the kidney of ATRAP‐knockout mice correlated with decreased expression of the prosurvival gene, Sirtuin1. On the other hand, chronic angiotensin II infusion did not affect renal sirtuin1 expression in wild‐type mice.ConclusionsThese results indicate that ATRAP plays an important role in inhibiting kidney aging, possibly through sirtuin1‐mediated mechanism independent of blocking AT1R signaling, and further protecting normal life span.
The Ang II type 1 receptor (AT1R)-associated protein (ATRAP/Agtrap) is a molecule specifically interacting with the carboxyl- terminal domain of AT1R. The results of in vitro studies showed that ATRAP suppresses Ang II-mediated pathological responses in cardiovascular cells by promoting AT1R internalization. With respect to the tissue distribution and regulation of ATRAP expression in vivo, ATRAP is broadly expressed in many tissues as is AT1R. Accumulating evidence indicates that a tissue-specific regulatory balancing of ATRAP and AT1R expression may be involved in the modulation of AT1R signaling at local tissue sites and also in the pathophysiology of hypertension and its associated end-organ injury. Furthermore, the activation of ATRAP in transgenic-models inhibited inflammatory vascular remodeling and cardiac hypertrophy in response to Ang II stimulation. These results suggest the clinical potential benefit of an ATRAP activation strategy in the treatment of hypertension and related organ injury.
Angiotensin II type 1 receptor-associated protein (ATRAP) promotes AT1R internalization along with suppression of hyperactivation of tissue AT1R signaling. Here, we provide evidence that renal ATRAP plays a critical role in suppressing hypertension in a mouse remnant kidney model of chronic kidney disease. The effect of 5/6 nephrectomy on endogenous ATRAP expression was examined in the kidney of C57BL/6 and 129/Sv mice. While 129/Sv mice with a remnant kidney showed decreased renal ATRAP expression and developed hypertension, C57BL/6 mice exhibited increased renal ATRAP expression and resistance to progressive hypertension. Consequently, we hypothesized that downregulation of renal ATRAP expression is involved in pathogenesis of hypertension in the remnant kidney model of chronic kidney disease. Interestingly, 5/6 nephrectomy in ATRAP-knockout mice on the hypertension-resistant C57BL/6 background caused hypertension with increased plasma volume. Moreover, in knockout compared to wild-type C57BL/6 mice after 5/6 nephrectomy, renal expression of the epithelial sodium channel α-subunit and tumor necrosis factor-α was significantly enhanced, concomitant with increased plasma membrane angiotensin II type 1 receptor in the kidneys. Thus, renal ATRAP downregulation is involved in the onset and progression of blood pressure elevation caused by renal mass reduction, and implicates ATRAP as a therapeutic target for hypertension in chronic kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.