Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17‐allylamino‐17‐demethoxy‐geldanamycin (17‐AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17‐AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17‐AAG can be given safely at biologically active dosages with mild toxicity. Even though 17‐AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials‐based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17‐AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17‐AAG.
Background
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs.
Result
There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials.
Conclusion
This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.