A novel color feature descriptor, Multichannel Distributed Local Pattern (MDLP) is proposed in this manuscript. The MDLP combines the salient features of both local binary and local mesh patterns in the neighborhood. The multi-distance information computed by the MDLP aids in robust extraction of the texture arrangement. Further, MDLP features are extracted for each color channel of an image. The retrieval performance of the MDLP is evaluated on the three benchmark datasets for CBIR, namely Corel-5000, Corel-10000 and MIT-Color Vistex respectively. The proposed technique attains substantial improvement as compared to other state-ofthe-art feature descriptors in terms of various evaluation parameters such as ARP and ARR on the respective databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.