One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. However, development of such models has largely been hindered by the lack of multilingual training data. In this paper, we present a new data set of 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) across the domains weather, alarm, and reminder. We use this data set to evaluate three different cross-lingual transfer methods: (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, multilingual contextual word representations give better results than using cross-lingual static embeddings. We also compare the cross-lingual methods to using monolingual resources in the form of contextual ELMo representations and find that given just small amounts of target language data, this method outperforms all cross-lingual methods, which highlights the need for more sophisticated cross-lingual methods.
Task oriented dialog systems typically first parse user utterances to semantic frames comprised of intents and slots. Previous work on task oriented intent and slot-filling work has been restricted to one intent per query and one slot label per token, and thus cannot model complex compositional requests. Alternative semantic parsing systems have represented queries as logical forms, but these are challenging to annotate and parse. We propose a hierarchical annotation scheme for semantic parsing that allows the representation of compositional queries, and can be efficiently and accurately parsed by standard constituency parsing models. We release a dataset of 44k annotated queries 1 , and show that parsing models outperform sequence-to-sequence approaches on this dataset.
Bootstrapped pattern learning for entity extraction usually starts with seed entities and iteratively learns patterns and entities from unlabeled text. Patterns are scored by their ability to extract more positive entities and less negative entities. A problem is that due to the lack of labeled data, unlabeled entities are either assumed to be negative or are ignored by the existing pattern scoring measures. In this paper, we improve pattern scoring by predicting the labels of unlabeled entities. We use various unsupervised features based on contrasting domain-specific and general text, and exploiting distributional similarity and edit distances to learned entities. Our system outperforms existing pattern scoring algorithms for extracting drug-andtreatment entities from four medical forums.
Task-oriented semantic parsing is a critical component of virtual assistants, which is responsible for understanding the user's intents (set reminder, play music, etc.). Recent advances in deep learning have enabled several approaches to successfully parse more complex queries Rongali et al., 2020), but these models require a large amount of annotated training data to parse queries on new domains (e.g. reminder, music).In this paper, we focus on adapting taskoriented semantic parsers to low-resource domains, and propose a novel method that outperforms a supervised neural model at a 10-fold data reduction. In particular, we identify two fundamental factors for low-resource domain adaptation: better representation learning and better training techniques. Our representation learning uses BART (Lewis et al., 2020) to initialize our model which outperforms encoder-only pre-trained representations used in previous work. Furthermore, we train with optimization-based meta-learning (Finn et al., 2017) to improve generalization to lowresource domains. This approach significantly outperforms all baseline methods in the experiments on a newly collected multi-domain taskoriented semantic parsing dataset (TOPv2 1 ).
We propose pre-finetuning, an additional largescale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that prefinetuning consistently improves performance for pretrained discriminators (e.g. RoBERTa) and generation models (e.g. BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.