Activation of microglia in the spinal cord following peripheral nerve injury is critical for the development of long-lasting pain hypersensitivity. However, it remains unclear whether distinct microglia subpopulations or states contribute to different stages of pain development and maintenance. Using single-cell RNA-sequencing, we show that peripheral nerve injury induces the generation of a male-specific inflammatory microglia subtype, and demonstrate increased proliferation of microglia in male as compared to female mice. We also show time- and sex-specific transcriptional changes in different microglial subpopulations following peripheral nerve injury. Apolipoprotein E (Apoe) is the top upregulated gene in spinal cord microglia at chronic time points after peripheral nerve injury in mice. Furthermore, polymorphisms in the APOE gene in humans are associated with chronic pain. Single-cell RNA sequencing analysis of human spinal cord microglia reveals a subpopulation with a disease-related transcriptional signature. Our data provide a detailed analysis of transcriptional states of mouse and human spinal cord microglia, and identify a link between ApoE and chronic pain in humans.
Translational control of gene expression has emerged as a key mechanism in regulating different forms of long-lasting neuronal plasticity. Maladaptive plastic reorganization of peripheral and spinal nociceptive circuits underlies many chronic pain states and relies on new gene expression. Accordingly, downregulation of mRNA translation in primary afferents and spinal dorsal horn neurons inhibits tissue injury-induced sensitization of nociceptive pathways, supporting a central role for translation dysregulation in the development of persistent pain. Translation is primarily regulated at the initiation stage via the coordinated activity of translation initiation factors. The mRNA cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E), is involved in the recruitment of the ribosome to the mRNA cap structure, playing a central role in the regulation of translation initiation. eIF4E integrates inputs from the mTOR and ERK signaling pathways, both of which are activated in numerous painful conditions to regulate the translation of a subset of mRNAs. Many of these mRNAs are involved in the control of cell growth, proliferation, and neuroplasticity. However, the full repertoire of eIF4E-dependent mRNAs in the nervous system and their translation regulatory mechanisms remain largely unknown. In this review, we summarize the current evidence for the role of eIF4E-dependent translational control in the sensitization of pain circuits and present pharmacological approaches to target these mechanisms. Understanding eIF4E-dependent translational control mechanisms and their roles in aberrant plasticity of nociceptive circuits might reveal novel therapeutic targets to treat persistent pain states.
HighlightsTranslational landscape in DRG and spinal cord in SNI assay of neuropathic pain was established.ERK is a central hub of both transcriptionally and translationally controlled genes.Changes in translation efficiency and mRNA levels occur in the opposite direction for multiple mRNAs.
Activation of microglia in the spinal cord following peripheral nerve injury is critical for the development of long-lasting pain hypersensitivity. However, it remains unknown whether distinct microglia subpopulations or states contribute to different stages of pain development and maintenance. We show, using single-cell RNA-sequencing, that nerve injury induces the generation of a male-specific inflammatory microglia subtype, and demonstrate increased proliferation of microglia in males as compared to females. We also show time- and sex-specific transcriptional changes in different microglial subpopulations following injury. Apolipoprotein E (Apoe) is the top upregulated gene in microglia at chronic time points after nerve injury in mice and polymorphisms in the APOE gene in humans are associated with chronic pain. Single-cell analysis of human spinal cord microglia reveals a subpopulation with a disease-related transcriptional signature. Our data provide a detailed analysis of transcriptional states of mouse and human spinal cord microglia, and identify a previously unrecognized role for ApoE in neuropathic pain.
HighlightsSpinal sensitization shares molecular mechanisms with hippocampal LTP and memory.Changes in mRNA translation are observed in many chronic pain conditions.Targeting translational control mechanisms is a promising strategy to inhibit pain.Targeting spinal reconsolidation can reverse established hypersensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.