Near-contact hydrodynamic interactions between a solid sphere and a plane porous slab are investigated in the framework of lubrication theory. The size of pores in the slab is small compared with the slab thickness so that the Darcy law holds there. The slab is thin: that is, its thickness is small compared with the sphere radius. The considered problem involves a sphere translating above the slab together with a permeation flow across the slab and a uniform pressure below. The pressure is continuous across both slab interfaces and the Saffman slip condition applies on its upper interface. An extended Reynolds-like equation is derived for the pressure in the gap between the sphere and the slab. This equation is solved numerically and the drag force on the sphere is calculated therefrom for a wide range of values of the slab interface slip length and of the permeability parameter $\unicode[STIX]{x1D6FD}=24k^{\ast }R/(e\unicode[STIX]{x1D6FF}^{2})$, where $k^{\ast }$ is the permeability, $e$ is the porous slab thickness, $R$ is the sphere radius and $\unicode[STIX]{x1D6FF}$ is the gap. Moreover, asymptotics expansions for the pressure and drag are derived for high and low $\unicode[STIX]{x1D6FD}$. These expansions, which agree with the numerics, are also handy formulae for practical use. All results match with those of other authors in particular cases. The settling trajectory of a sphere towards a porous slab in a fluid at rest is calculated from these results and, as expected, the time for reaching the slab decays for increasing slab permeability and upper interface slip length.
The flow field around a solid particle moving in a shear flow along a porous slab is obtained by solving the coupled Stokes-Darcy problem with the Beavers and Joseph slip boundary condition on the slab interfaces. The solution involves the Green's function of this coupled problem, which is given here. It is shown that the classical boundary integral method using this Green's function is inappropriate because of supplementary contributions due to the slip on the slab interfaces. An 'indirect boundary integral method' is therefore proposed, in which the unknown density on the particle surface is not the actual stress, but yet allows calculation of the force and torque on the particle. Various results are provided for the normalized force and torque, namely friction factors, on the particle. The cases of a sphere and an ellipsoid are considered. It is shown that the relationships between friction coefficients (torque due to rotation and force due to translation) that are classical for a no-slip plane do not apply here. This difference is exhibited. Finally, results for the velocity of a freely moving particle in a linear and a quadratic shear flow are presented, for both a sphere and an ellipsoid.
International audienceThe motion of a solid and no-slipping particle immersed in a shear flow along a sufficiently porous slab is investigated. The fluid flow outside and inside of the slab is governed by the Stokes and Darcy equations, respectively, and the so-called Beavers and Joseph slip boundary conditions are enforced on the slab surface. The problem is solved for a distant particle with length scale a in terms of the small parameter a/d where d designates the large particle-slab separation. This is achieved by asymptotically inverting a relevant boundary-integral equation on the particle surface, which has been recently proposed for any particle location (distant or close particle) in Khabthani et al. (J Fluid Mech 713:271-306, 2012). It is found that at order O(a/d) the slab behaves for any particle shape as a solid plane no-slip wall while the slab properties (thickness, permeability, associated slip length) solely enter at O((a/d)(2)). Moreover, for a spherical particle, the numerical results published in Khabthani et al. (J Fluid Mech 713:271-306, 2012) perfectly agree with the present asymptotic analysis
International audienceThe motion of particles in a viscous fluid close to a porous membrane is modelled for the case when particles are large compared with the size of pores of the membrane. The hydrodynamic interactions of one particle with the membrane are detailed here. The model involves Stokes equations for the fluid motion around the particle together with Darcy equations for the flow in the porous membrane and Stokes equations for the flow on the other side of the membrane. Boundary conditions at the fluid-membrane interface are the continuity of pressure and velocity in the normal direction and the Beavers and Joseph slip condition on the fluid side in the tangential directions. The no-slip condition applies on the particle. This problem is solved here by two different methods. The first one is an extended boundary integral method (EBIM). A Green function is derived for the flow close to a porous membrane. This function is non-symmetric, leading to difficulties hindering the application of the classical boundary integral method (BIM). Thus, an extended method is proposed, in which the unknown distribution of singularities on the particle surface is not the stress, like in the classical boundary integral method. Yet, the hydrodynamic force and torque on the particle are obtained by integrals of this distribution on the particle surface. The second method consists in searching the solution as an asymptotic expansion in term of a small parameter that is the ratio of the typical pore size to the particle size. The various boundary conditions are taken into account at successive orders: order (0) simply represents an impermeable wall without slip and order (1) an impermeable wall with a peculiar slip prescribed by order (0); at least the 3rd order is necessary to enforce all boundary conditions. The methods are applied numerically to a spherical particle and comparisons are made with earlier works in particular cases. © 2010 American Institute of Physics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.