Quantitative skills are an important competency for undergraduate biology students and should be incorporated early and frequently in an undergraduate's career. Community colleges (CCs) are responsible for teaching introductory biology to a large proportion of biology and prehealth students, and quantitative skills are critical for their careers. However, we know little about the challenges and affordances that CC instructors encounter when incorporating quantitative skills into their courses. To explore this, we interviewed CC biology instructors (n = 20) about incorporating quantitative biology (QB) instruction into their classes. We used a purposeful sampling approach to recruit instructors who were likely to have tried evidence-based pedagogies and were likely aware of the importance of QB instruction. We used open coding to identify themes related to the affordances to and constraints on teaching QB. Overall, our study participants met with challenges typical of incorporating new material or techniques into any college-level class, including perceptions of student deficits, tension between time to teach quantitative skills and cover biology content, and gaps in teacher professional knowledge (e.g., content and pedagogical content knowledge). We analyze these challenges and offer potential solutions and recommendations for professional development to support QB instruction at CCs.
Substantial guidance is available on undergraduate quantitative training for biologists, including reports focused on biomedical science, but far less attention has been paid to the graduate curriculum. In this setting, we propose an innovative approach to quantitative education that goes beyond recommendations of a course or set of courses or activities. Due to the diversity of quantitative methods, it is infeasible to expect that biomedical PhD students can be exposed to more than a minority of the quantitative concepts and techniques employed in modern biology. We developed a novel prioritization approach in which we mined and analyzed quantitative concepts and skills from publications that faculty in relevant units deemed central to the scientific comprehension of their field. The analysis provides a prioritization of quantitative skills and concepts and could represent an effective method to drive curricular focus based upon program-specific faculty input for biological science programs of all types. Our results highlight the disconnect between typical undergraduate quantitative education for life science students, focused on continuous mathematics, and the concepts and skills in graphics, statistics, and discrete mathematics that arise from priorities established by biomedical science faculty.One Sentence SummaryWe developed a novel approach to prioritize quantitative concepts and methods for inclusion in a graduate biomedical science curriculum based upon approaches included in faculty-identified key publications.
Substantial guidance is available on undergraduate quantitative training for biologists, including reports focused on biomedical science. Far less attention has been paid to the graduate curriculum and the particular challenges of the diversity of specialization within the life sciences. We propose an innovative approach to quantitative education that goes beyond recommendations of a course or set of courses or activities, derived from analysis of the expectations for students in particular programs. Due to the plethora of quantitative methods, it is infeasible to expect that biomedical PhD students can be exposed to more than a minority of the quantitative concepts and techniques employed in modern biology. We collected key recent papers suggested by the faculty in biomedical science programs, chosen to include important scientific contributions that the faculty consider appropriate for all students in the program to be able to read with confidence. The quantitative concepts and methods inherent in these papers were then analyzed and categorized to provide a rational basis for prioritization of those concepts to be emphasized in the education program. This novel approach to prioritization of quantitative skills and concepts provides an effective method to drive curricular focus based upon program-specific faculty input for science programs of all types. The results of our particular application to biomedical science training highlight the disconnect between typical undergraduate quantitative education for life science students, focused on continuous mathematics, and the concepts and skills in graphics, statistics, and discrete mathematics that arise from priorities established by biomedical science faculty. There was little reference in the key recent papers chosen by faculty to classic mathematical areas such as calculus which make up a large component of the formal undergraduate mathematics training of graduate students in biomedical areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.