A novel cationic amphiphilic lignin derivative with high surface activity was prepared from kraft lignin via the introduction of dehydroabietyl groups as lipophilic groups and diethylenetriamine groups as hydrophilic groups by the Mannich and ketone-amine condensation reactions. Solubility, surface tension, hydrophilic-lipophilic balance (HLB) values, foamability, and zeta potential were used to evaluate the basic physicochemical properties of the cationic amphiphilic lignin derivative. The experiments show that the solubility of the cationic amphiphilic lignin derivative is 2.10 wt%, the critical micelle concentration is 5.0 g•L-1 , the surface tension is 29.85 mN•m-1 at a concentration of 5.0 g•L-1 , the HLB value is 12, and the foam volume is 11.1 mL initially and 8.0 mL after standing for 5 min in an aqueous solution at pH 2.0.
Phosphotungstic acid supported over silica catalysts were prepared, characterized and tested. The results show that silica-supported phosphotungstic acid with 50 wt% of loading amount indicates excellent catalytic performance for the polymerization ofα-pinene. It is also found that the products are easily separated from reaction mixture and the silica-supported phosphotungstic acid catalysts are low-corrosive. Hence, a clean and environmentally friendly heterogeneous catalyst forα-pinene polymerization is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.