Multiphase lightweight aggregate concrete (MLAC) is a green composite building material prepared by replacing part of the crushed stone in concrete with other coarse aggregates to save construction ore resources. For the best MLAC performance in this paper, four kinds of coarse aggregate—coal gangue ceramsite, fly ash ceramsite, pumice and coral—were used in different dosages (10%, 20%, 30% and 40%) of the total coarse aggregate replacement. Mechanical property and impact resistance tests on each MLAC group showed that, when coal gangue ceramsite was 20%, the mechanical properties and impact resistance of concrete were the best. The compressive, flexural and splitting tensile strength and impact energy dissipation increased by 29.25, 19.93, 13.89 and 8.2%, respectively, compared with benchmark concrete. The impact loss evolution equation established by the two-parameter Weibull distribution model effectively describes the damage evolution process of MLAC under dynamic loading. The results of a comprehensive performance evaluation of four multiphase light aggregate concretes are coal gangue ceramsite concrete (CGC) > fly ash ceramsite concrete (FAC) > coral aggregate concrete (CC) > pumice aggregate concrete (PC).
Silica-fume–polyvinyl-alcohol-fiber-reinforced concrete (SPRC) is a green and environmentally friendly composite material incorporating silica fume and polyvinyl alcohol fiber into concrete. To study the impact resistance of SPRC, compressive-strength and drop hammer impact tests were conducted on SPRC with different silica-fume and polyvinyl-alcohol-fiber contents. The mechanical and impact resistance properties of the SPRC were comprehensively analyzed in terms of the compressive strength, ductility ratio and impact-energy-dissipation variation. Based on the impact resistance of the SPRC, the impact life of SPRC with different failure probabilities was predicted by incorporating the Weibull distribution model, and an impact damage evolution equation for SPRC was established. The impact life of SPRC under the action of silica-fume content, polyvinyl-alcohol-fiber content and failure probability was analyzed in depth by the response surface method (RSM). The research results show that, when the content of silica fume is 10% and the content of polyvinyl alcohol fiber is 1%, the compressive strength and impact resistance of SPRC are the best. The RSM response model can effectively predict and describe the impact life of SPRC specimens under the action of three factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.