The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross-fertilize both deep learning and quantum-many body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex datasets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.
We compare and contrast the statistical physics and quantum physics inspired approaches for unsupervised generative modeling of classical data. The two approaches represent probabilities of observed data using energybased models and quantum states respectively. Classical and quantum information patterns of the target datasets therefore provide principled guidelines for structural design and learning in these two approaches. Taking the restricted Boltzmann machines (RBM) as an example, we analyze the information theoretical bounds of the two approaches. We verify our reasonings by comparing the performance of RBMs of various architectures on the standard MNIST datasets. arXiv:1712.04144v1 [physics.data-an]
Matrix product states (MPS), a tensor network designed for one-dimensional quantum systems, has been recently proposed for generative modeling of natural data (such as images) in terms of "Born machine". However, the exponential decay of correlation in MPS restricts its representation power heavily for modeling complex data such as natural images. In this work, we push forward the effort of applying tensor networks to machine learning by employing the Tree Tensor Network (TTN) which exhibits balanced performance in expressibility and efficient training and sampling. We design the tree tensor network to utilize the 2-dimensional prior of the natural images and develop sweeping learning and sampling algorithms which can be efficiently implemented utilizing Graphical Processing Units (GPU). We apply our model to random binary patterns and the binary MNIST datasets of handwritten digits. We show that TTN is superior to MPS for generative modeling in keeping correlation of pixels in natural images, as well as giving better log-likelihood scores in standard datasets of handwritten digits. We also compare its performance with state-of-the-art generative models such as the Variational AutoEncoders, Restricted Boltzmann machines, and PixelCNN. Finally, we discuss the future development of Tensor Network States in machine learning problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.