In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wavefunction of the molecular orbital from which the electron is removed. The orbital wavefunctions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory (DFT). We show that the asymptotic wavefunction can be improved with an iteration method and after one iteration accurate asymptotic wavefunctions and structure parameters are determined. With the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.
Visceral leishmaniasis (VL), one of the deadliest parasitic diseases in the world, causes more than 50,000 human deaths each year and afflicts millions of people throughout South America, East Africa, South Asia, and Mediterranean Region. In 2015 the World Health Organization classified VL as a neglected tropical disease (NTD), prompting concentrated study of the VL epidemic using mathematical and simulation models. This paper reviews literature related to prevalence and prevention control strategies. More than thirty current research works were reviewed and classified based on VL epidemic study methods, including modeling approaches, control strategies, and simulation techniques since 2013. A summarization of these technical methods, major findings, and contributions from existing works revealed that VL epidemic research efforts must improve in the areas of validating and verifying VL mathematical models with real-world epidemic data. In addition, more dynamic disease control strategies must be explored and advanced simulation techniques must be used to predict VL pandemics.
In the strong field molecular tunnelling ionization theory (Tong X M 2002 Phys. Rev. A 66 033402), the ionization rate depends on structure parameters of molecules which can be extracted from molecular wavefunctions in the asymptotic region. By using molecular orbitals obtained from standard quantum chemistry packages, we extract these parameters for several selected nonlinear polyatomic molecules. We show that the symmetry properties of the molecular orbital are reflected vividly in the angle-dependent tunnelling ionization rates. The structure parameters for 17 nonlinear molecules have been calculated and tabulated for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.