Kainic acid, an analogue of glutamate, causes limbic seizures and induces cell death in the rat brain. We examined the activation of MAPK family kinases; ERKs, JNKs and p38 kinase in rat hippocampus after KA treatment. Activation of all three kinases were observed at 30 min after the treatment, but, in contrary to ERK phosphorylation, which lasted up to 3 h, the phosphorylation of JNK and p38 returned to the basal level by 2 h. The phosphorylation of upstream kinases for the MAPK family was distinct. The phosphorylation of MEK1 clearly increased at 30 min but diminished rapidly thereafter. The phosphorylation of MKK6 was also increased but reached peak at 2 h after KA treatment. However, the phosphorylation of other upstream kinases, SEK1 and MKK3, gradually decreased to 3 h after KA treatment. These results indicate that the KA activates all of the three MAPK family kinases with different time patterns and suggest the possibility that MKK3 and MKK6, and SEK1 may not be the upstream kinases for p38 and JNK in rat hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.